{"title":"改进的高维傅里叶限制估计","authors":"J. Hickman, K. Rogers","doi":"10.4310/cjm.2019.v7.n3.a1","DOIUrl":null,"url":null,"abstract":"We consider Guth's approach to the Fourier restriction problem via polynomial partitioning. By writing out his induction argument as a recursive algorithm and introducing new geometric information, known as the polynomial Wolff axioms, we obtain improved bounds for the restriction conjecture, particularly in high dimensions. Consequences for the Kakeya conjecture are also considered.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2018-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Improved Fourier restriction estimates in higher dimensions\",\"authors\":\"J. Hickman, K. Rogers\",\"doi\":\"10.4310/cjm.2019.v7.n3.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Guth's approach to the Fourier restriction problem via polynomial partitioning. By writing out his induction argument as a recursive algorithm and introducing new geometric information, known as the polynomial Wolff axioms, we obtain improved bounds for the restriction conjecture, particularly in high dimensions. Consequences for the Kakeya conjecture are also considered.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2018-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2019.v7.n3.a1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2019.v7.n3.a1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Improved Fourier restriction estimates in higher dimensions
We consider Guth's approach to the Fourier restriction problem via polynomial partitioning. By writing out his induction argument as a recursive algorithm and introducing new geometric information, known as the polynomial Wolff axioms, we obtain improved bounds for the restriction conjecture, particularly in high dimensions. Consequences for the Kakeya conjecture are also considered.