一个基于广义粘性显式方法的无限增生算子族的迭代算法

IF 0.5 Q3 MATHEMATICS
T. Sow
{"title":"一个基于广义粘性显式方法的无限增生算子族的迭代算法","authors":"T. Sow","doi":"10.52737/18291163-2020.12.9-1-19","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce and study a new iterative method based on the generalized viscosity explicit methods (GVEM) for solving the inclusion problem with an infinite family of multivalued accretive operators in real Banach spaces. Applications to equilibrium and to convex minimization problems involving an infinite family of semi-continuous and convex functions are included. Our results improve important recent results.","PeriodicalId":42323,"journal":{"name":"Armenian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An iterative algorithm based on the generalized viscosity explicit methods for an infinite family of accretive operators\",\"authors\":\"T. Sow\",\"doi\":\"10.52737/18291163-2020.12.9-1-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce and study a new iterative method based on the generalized viscosity explicit methods (GVEM) for solving the inclusion problem with an infinite family of multivalued accretive operators in real Banach spaces. Applications to equilibrium and to convex minimization problems involving an infinite family of semi-continuous and convex functions are included. Our results improve important recent results.\",\"PeriodicalId\":42323,\"journal\":{\"name\":\"Armenian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Armenian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52737/18291163-2020.12.9-1-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Armenian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52737/18291163-2020.12.9-1-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文在广义粘性显式方法(GVEM)的基础上,引入并研究了一种新的迭代方法,用于求解实Banach空间中无穷多值增生算子族的包含问题。包括在平衡和凸最小化问题中的应用,这些问题涉及一个半连续和凸函数的无限族。我们的结果改进了最近的重要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An iterative algorithm based on the generalized viscosity explicit methods for an infinite family of accretive operators
In this paper, we introduce and study a new iterative method based on the generalized viscosity explicit methods (GVEM) for solving the inclusion problem with an infinite family of multivalued accretive operators in real Banach spaces. Applications to equilibrium and to convex minimization problems involving an infinite family of semi-continuous and convex functions are included. Our results improve important recent results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
13
审稿时长
48 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信