R. Uren, Francois Bothma, C. D. van der Lingen, H. Bouwman
{"title":"南大西洋同域掠食性鱼类和鱿鱼金属成分和浓度的差异","authors":"R. Uren, Francois Bothma, C. D. van der Lingen, H. Bouwman","doi":"10.1080/15627020.2020.1810121","DOIUrl":null,"url":null,"abstract":"Metals occur naturally in the environment and in organisms. Organisms at higher trophic levels may contain metals at elevated concentrations, as a result of accumulation from anthropogenic and natural sources, potentially making them more susceptible to detrimental effects, as well as passing them on to consumers. The concentrations of thirty metals were quantified in hake (Merluccius capensis), kingklip (Genypterus capensis), monkfish (Lophius vomerinus) and chokka (Loligo reynaudii) collected from the South Atlantic Ocean of South Africa in February 2017 and February 2019, using inductively coupled plasma mass spectrometry. Metal concentrations and composition in nektobenthic chokka differed significantly from the three demersal fish predators (hake, kingklip, and monkfish). Demersal fish metal concentrations and relative pattern compositions (fingerprints) were similar. Because the samples were collected within an 80 km radius, the differences are likely as a result of a combination of factors, such as diet, habitat (depth), and differences in the physiological regulation of metals between cephalopods and fish, rather than location. Based on South African estimated daily intake, total hazard quotient and European Union limits for mercury, cadmium and lead, these four economically important species from the South Atlantic Ocean are safe for human consumption. Plankton, herbivorous marine species, and larger predators, such as sharks and dolphins, should be studied to obtain further insight into metals as baseline for monitoring possible future pollution and effects from climate change, trophic transfer, toxic effects, and human consumer safety.","PeriodicalId":55548,"journal":{"name":"African Zoology","volume":"55 1","pages":"278 - 291"},"PeriodicalIF":0.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15627020.2020.1810121","citationCount":"4","resultStr":"{\"title\":\"Differences in Metal Compositions and Concentrations of Sympatric Predatory Fish and Squid from the South Atlantic Ocean§\",\"authors\":\"R. Uren, Francois Bothma, C. D. van der Lingen, H. Bouwman\",\"doi\":\"10.1080/15627020.2020.1810121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metals occur naturally in the environment and in organisms. Organisms at higher trophic levels may contain metals at elevated concentrations, as a result of accumulation from anthropogenic and natural sources, potentially making them more susceptible to detrimental effects, as well as passing them on to consumers. The concentrations of thirty metals were quantified in hake (Merluccius capensis), kingklip (Genypterus capensis), monkfish (Lophius vomerinus) and chokka (Loligo reynaudii) collected from the South Atlantic Ocean of South Africa in February 2017 and February 2019, using inductively coupled plasma mass spectrometry. Metal concentrations and composition in nektobenthic chokka differed significantly from the three demersal fish predators (hake, kingklip, and monkfish). Demersal fish metal concentrations and relative pattern compositions (fingerprints) were similar. Because the samples were collected within an 80 km radius, the differences are likely as a result of a combination of factors, such as diet, habitat (depth), and differences in the physiological regulation of metals between cephalopods and fish, rather than location. Based on South African estimated daily intake, total hazard quotient and European Union limits for mercury, cadmium and lead, these four economically important species from the South Atlantic Ocean are safe for human consumption. Plankton, herbivorous marine species, and larger predators, such as sharks and dolphins, should be studied to obtain further insight into metals as baseline for monitoring possible future pollution and effects from climate change, trophic transfer, toxic effects, and human consumer safety.\",\"PeriodicalId\":55548,\"journal\":{\"name\":\"African Zoology\",\"volume\":\"55 1\",\"pages\":\"278 - 291\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15627020.2020.1810121\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"African Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15627020.2020.1810121\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15627020.2020.1810121","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ZOOLOGY","Score":null,"Total":0}
Differences in Metal Compositions and Concentrations of Sympatric Predatory Fish and Squid from the South Atlantic Ocean§
Metals occur naturally in the environment and in organisms. Organisms at higher trophic levels may contain metals at elevated concentrations, as a result of accumulation from anthropogenic and natural sources, potentially making them more susceptible to detrimental effects, as well as passing them on to consumers. The concentrations of thirty metals were quantified in hake (Merluccius capensis), kingklip (Genypterus capensis), monkfish (Lophius vomerinus) and chokka (Loligo reynaudii) collected from the South Atlantic Ocean of South Africa in February 2017 and February 2019, using inductively coupled plasma mass spectrometry. Metal concentrations and composition in nektobenthic chokka differed significantly from the three demersal fish predators (hake, kingklip, and monkfish). Demersal fish metal concentrations and relative pattern compositions (fingerprints) were similar. Because the samples were collected within an 80 km radius, the differences are likely as a result of a combination of factors, such as diet, habitat (depth), and differences in the physiological regulation of metals between cephalopods and fish, rather than location. Based on South African estimated daily intake, total hazard quotient and European Union limits for mercury, cadmium and lead, these four economically important species from the South Atlantic Ocean are safe for human consumption. Plankton, herbivorous marine species, and larger predators, such as sharks and dolphins, should be studied to obtain further insight into metals as baseline for monitoring possible future pollution and effects from climate change, trophic transfer, toxic effects, and human consumer safety.
期刊介绍:
African Zoology , a peer-reviewed research journal, publishes original scientific contributions and critical reviews that focus principally on African fauna in terrestrial, freshwater, and marine ecosystems. Research from other regions that advances practical and theoretical aspects of zoology will be considered. Rigorous question-driven research in all aspects of zoology will take precedence over descriptive research. The Journal publishes full-length papers, critical reviews, short communications, letters to the editors as well as book reviews. Contributions based on purely observational, descriptive or anecdotal data will not be considered.
The Journal is produced by NISC in association with the Zoological Society of South Africa (ZSSA). Acceptance of papers is the responsibility of the Editors-in-Chief in consultation with the Editors and members of the Editorial Advisory Board. All views expressed are those of the author and not necessarily those of the Editors or the Department.