无限斐波那契群与相对非球面

IF 1.1 Q1 MATHEMATICS
M. Edjvet, A. Juhász
{"title":"无限斐波那契群与相对非球面","authors":"M. Edjvet, A. Juhász","doi":"10.1112/tlm3.12007","DOIUrl":null,"url":null,"abstract":"We prove that the generalised Fibonacci group F(r,n) is infinite for (r,n)∈{(7+5k,5),(8+5k,5):k⩾0} . This together with previously known results yields a complete classification of the finite F(r,n) , a problem that has its origins in a question by J. H. Conway in 1965. The method is to show that a related relative presentation is aspherical from which it can be deduced that the groups are infinite.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2017-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlm3.12007","citationCount":"7","resultStr":"{\"title\":\"The infinite Fibonacci groups and relative asphericity\",\"authors\":\"M. Edjvet, A. Juhász\",\"doi\":\"10.1112/tlm3.12007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the generalised Fibonacci group F(r,n) is infinite for (r,n)∈{(7+5k,5),(8+5k,5):k⩾0} . This together with previously known results yields a complete classification of the finite F(r,n) , a problem that has its origins in a question by J. H. Conway in 1965. The method is to show that a related relative presentation is aspherical from which it can be deduced that the groups are infinite.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/tlm3.12007\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

我们证明广义Fibonacci群F(r,n)对于(r,n)∈{(7+5k,5),(8+5k,5):k小于0}是无限的。这与先前已知的结果一起产生了有限F(r,n)的完全分类,这个问题起源于1965年J. H. Conway的一个问题。该方法是证明一个相关的相对表示是非球面的,由此可以推导出群是无限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The infinite Fibonacci groups and relative asphericity
We prove that the generalised Fibonacci group F(r,n) is infinite for (r,n)∈{(7+5k,5),(8+5k,5):k⩾0} . This together with previously known results yields a complete classification of the finite F(r,n) , a problem that has its origins in a question by J. H. Conway in 1965. The method is to show that a related relative presentation is aspherical from which it can be deduced that the groups are infinite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信