R. Gupta, M. Afsar, Yadav Rp, D. Shukla, J. Rajeswaran
{"title":"脑电神经反馈训练在中重度颅脑损伤患者中的作用:临床和电生理结果研究","authors":"R. Gupta, M. Afsar, Yadav Rp, D. Shukla, J. Rajeswaran","doi":"10.15540/nr.7.2.75","DOIUrl":null,"url":null,"abstract":"Traumatic brain injury (TBI) is a leading cause of death, and its survivors with a disability are considered to be an important global health priority. In view of a diverse range of disability and its impact on TBI survivors, the need for effective rehabilitation modalities is on a high rise. Therefore, the present study was aimed to investigate the efficacy of EEG neurofeedback training (EEG-NFT) in moderate–severe TBI patients on their clinical and electrophysiological outcomes. The study was an experimental longitudinal design with a pre-post comparison. A total of 14 TBI patients in a postinjury period between 3 months to 2 years were recruited. All participants received twenty sessions of EEG-NFT. Baseline and post-NFT comparisons were made on postconcussion symptoms (PCS) and electrophysiological variables. The result indicates a significant reduction in the severity of PCS following EEG-NFT. A consistent pattern of reduced slow waves and fast waves amplitude ratios was also noted at post-NFT, although it was not significant across all the brain regions. The present study suggests EEG-NFT as a contributing factor in improving PCS and normalization of qEEG in TBI patients, which holds an implication for clinical decision-making of EEG-NFT as a viable alternative to be offered to TBI patients.","PeriodicalId":37439,"journal":{"name":"NeuroRegulation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effect of EEG Neurofeedback Training in Patients with Moderate–Severe Traumatic Brain Injury: A Clinical and Electrophysiological Outcome Study\",\"authors\":\"R. Gupta, M. Afsar, Yadav Rp, D. Shukla, J. Rajeswaran\",\"doi\":\"10.15540/nr.7.2.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traumatic brain injury (TBI) is a leading cause of death, and its survivors with a disability are considered to be an important global health priority. In view of a diverse range of disability and its impact on TBI survivors, the need for effective rehabilitation modalities is on a high rise. Therefore, the present study was aimed to investigate the efficacy of EEG neurofeedback training (EEG-NFT) in moderate–severe TBI patients on their clinical and electrophysiological outcomes. The study was an experimental longitudinal design with a pre-post comparison. A total of 14 TBI patients in a postinjury period between 3 months to 2 years were recruited. All participants received twenty sessions of EEG-NFT. Baseline and post-NFT comparisons were made on postconcussion symptoms (PCS) and electrophysiological variables. The result indicates a significant reduction in the severity of PCS following EEG-NFT. A consistent pattern of reduced slow waves and fast waves amplitude ratios was also noted at post-NFT, although it was not significant across all the brain regions. The present study suggests EEG-NFT as a contributing factor in improving PCS and normalization of qEEG in TBI patients, which holds an implication for clinical decision-making of EEG-NFT as a viable alternative to be offered to TBI patients.\",\"PeriodicalId\":37439,\"journal\":{\"name\":\"NeuroRegulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroRegulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15540/nr.7.2.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroRegulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15540/nr.7.2.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Effect of EEG Neurofeedback Training in Patients with Moderate–Severe Traumatic Brain Injury: A Clinical and Electrophysiological Outcome Study
Traumatic brain injury (TBI) is a leading cause of death, and its survivors with a disability are considered to be an important global health priority. In view of a diverse range of disability and its impact on TBI survivors, the need for effective rehabilitation modalities is on a high rise. Therefore, the present study was aimed to investigate the efficacy of EEG neurofeedback training (EEG-NFT) in moderate–severe TBI patients on their clinical and electrophysiological outcomes. The study was an experimental longitudinal design with a pre-post comparison. A total of 14 TBI patients in a postinjury period between 3 months to 2 years were recruited. All participants received twenty sessions of EEG-NFT. Baseline and post-NFT comparisons were made on postconcussion symptoms (PCS) and electrophysiological variables. The result indicates a significant reduction in the severity of PCS following EEG-NFT. A consistent pattern of reduced slow waves and fast waves amplitude ratios was also noted at post-NFT, although it was not significant across all the brain regions. The present study suggests EEG-NFT as a contributing factor in improving PCS and normalization of qEEG in TBI patients, which holds an implication for clinical decision-making of EEG-NFT as a viable alternative to be offered to TBI patients.
期刊介绍:
NeuroRegulation is a peer-reviewed journal providing an integrated, multidisciplinary perspective on clinically relevant research, treatment, reviews, and public policy for neuroregulation and neurotherapy. NeuroRegulation publishes important findings in these fields with a focus on electroencephalography (EEG), neurofeedback (EEG biofeedback), quantitative electroencephalography (qEEG), psychophysiology, biofeedback, heart rate variability, photobiomodulation, repetitive Transcranial Magnetic Simulation (rTMS) and transcranial Direct Current Stimulation (tDCS); with a focus on treatment of psychiatric, mind-body, and neurological disorders. In addition to research findings and reviews, it is important to stress that publication of case reports is always useful in furthering the advancement of an intervention for both clinical and normative functioning. We strive for high quality and interesting empirical topics presented in a rigorous and scholarly manner. The journal draws from expertise inside and outside of the International Society for Neurofeedback & Research (ISNR) to deliver material which integrates the diverse aspects of the field, to include: *basic science *clinical aspects *treatment evaluation *philosophy *training and certification issues *technology and equipment