具有季节演替的非局部扩散logistic模型的长时间行为

IF 0.4 Q4 MATHEMATICS, APPLIED
Zhenzhen Li, B. Dai
{"title":"具有季节演替的非局部扩散logistic模型的长时间行为","authors":"Zhenzhen Li, B. Dai","doi":"10.5206/mase/15415","DOIUrl":null,"url":null,"abstract":"This paper is devoted to a nonlocal dispersal logistic model with seasonal succession in one-dimensional bounded habitat, where the seasonal succession accounts for the effect of two different seasons. Firstly, we provide the persistence-extinction criterion for the species, which is different from that for local diffusion model. Then we show the asymptotic profile of the time-periodic positive solution as the species persists in long run.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-time behavior of a nonlocal dispersal logistic model with seasonal succession\",\"authors\":\"Zhenzhen Li, B. Dai\",\"doi\":\"10.5206/mase/15415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to a nonlocal dispersal logistic model with seasonal succession in one-dimensional bounded habitat, where the seasonal succession accounts for the effect of two different seasons. Firstly, we provide the persistence-extinction criterion for the species, which is different from that for local diffusion model. Then we show the asymptotic profile of the time-periodic positive solution as the species persists in long run.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mase/15415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/15415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一维有界生境中具有季节序列的非局部扩散逻辑模型,其中季节序列考虑了两个不同季节的影响。首先,我们给出了该物种的持续灭绝准则,该准则不同于局部扩散模型。然后,我们给出了当种群长期存在时,时间周期正解的渐近轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-time behavior of a nonlocal dispersal logistic model with seasonal succession
This paper is devoted to a nonlocal dispersal logistic model with seasonal succession in one-dimensional bounded habitat, where the seasonal succession accounts for the effect of two different seasons. Firstly, we provide the persistence-extinction criterion for the species, which is different from that for local diffusion model. Then we show the asymptotic profile of the time-periodic positive solution as the species persists in long run.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信