{"title":"Hamilton–jacobi方程的慢周期均匀化","authors":"William Cooperman","doi":"10.1080/03605302.2023.2246194","DOIUrl":null,"url":null,"abstract":"Abstract Capuzzo-Dolcetta–Ishii proved that the rate of periodic homogenization for coercive Hamilton–Jacobi equations is . We complement this result by constructing examples of coercive nonconvex Hamiltonians whose rate of periodic homogenization is .","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slow periodic homogenization for Hamilton–jacobi equations\",\"authors\":\"William Cooperman\",\"doi\":\"10.1080/03605302.2023.2246194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Capuzzo-Dolcetta–Ishii proved that the rate of periodic homogenization for coercive Hamilton–Jacobi equations is . We complement this result by constructing examples of coercive nonconvex Hamiltonians whose rate of periodic homogenization is .\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2023.2246194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2246194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Slow periodic homogenization for Hamilton–jacobi equations
Abstract Capuzzo-Dolcetta–Ishii proved that the rate of periodic homogenization for coercive Hamilton–Jacobi equations is . We complement this result by constructing examples of coercive nonconvex Hamiltonians whose rate of periodic homogenization is .