{"title":"完备二部图的满边友好索引集","authors":"W. Shiu","doi":"10.22108/TOC.2017.20739","DOIUrl":null,"url":null,"abstract":"Let $G=(V,E)$ be a simple graph. An edge labeling $f:Eto {0,1}$ induces a vertex labeling $f^+:VtoZ_2$ defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$, where $Z_2={0,1}$ is the additive group of order 2. For $iin{0,1}$, let $e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$. A labeling $f$ is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. $I_f(G)=v_f(1)-v_f(0)$ is called the edge-friendly index of $G$ under an edge-friendly labeling $f$. The full edge-friendly index set of a graph $G$ is the set of all possible edge-friendly indices of $G$. Full edge-friendly index sets of complete bipartite graphs will be determined.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"6 1","pages":"7-17"},"PeriodicalIF":0.6000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Full edge-friendly index sets of complete bipartite graphs\",\"authors\":\"W. Shiu\",\"doi\":\"10.22108/TOC.2017.20739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G=(V,E)$ be a simple graph. An edge labeling $f:Eto {0,1}$ induces a vertex labeling $f^+:VtoZ_2$ defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$, where $Z_2={0,1}$ is the additive group of order 2. For $iin{0,1}$, let $e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$. A labeling $f$ is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. $I_f(G)=v_f(1)-v_f(0)$ is called the edge-friendly index of $G$ under an edge-friendly labeling $f$. The full edge-friendly index set of a graph $G$ is the set of all possible edge-friendly indices of $G$. Full edge-friendly index sets of complete bipartite graphs will be determined.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"6 1\",\"pages\":\"7-17\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2017.20739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.20739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Full edge-friendly index sets of complete bipartite graphs
Let $G=(V,E)$ be a simple graph. An edge labeling $f:Eto {0,1}$ induces a vertex labeling $f^+:VtoZ_2$ defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$, where $Z_2={0,1}$ is the additive group of order 2. For $iin{0,1}$, let $e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$. A labeling $f$ is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. $I_f(G)=v_f(1)-v_f(0)$ is called the edge-friendly index of $G$ under an edge-friendly labeling $f$. The full edge-friendly index set of a graph $G$ is the set of all possible edge-friendly indices of $G$. Full edge-friendly index sets of complete bipartite graphs will be determined.