{"title":"由级联积引起的语言状态复杂性的范围-一元情况","authors":"M. Holzer, C. Rauch","doi":"10.1142/s0129054123430049","DOIUrl":null,"url":null,"abstract":"We investigate the state complexity of languages resulting from the cascade product of two minimal deterministic finite automata with [Formula: see text] and [Formula: see text] states, respectively. More precisely we study the magic number problem of the cascade product operation and show what range of complexities can be produced in case the left automaton is unary, that is, has only a singleton letter alphabet. Here we distinguish the cases when the involved automata are reset automata, permutation automata, permutation-reset automata, or do not have any restriction on their structure. It turns out that the picture on the obtained state complexities of the cascade product is diverse, and for all cases, except where the left automaton is a unary permutation(-reset) or a deterministic finite automaton without structural restrictions, and the right one is a reset automaton or a deterministic finite automaton without structural restrictions, we are able to identify state sizes that cannot be reached — these numbers are called “magic.”","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Range of State Complexities of Languages Resulting from the Cascade Product — The Unary Case\",\"authors\":\"M. Holzer, C. Rauch\",\"doi\":\"10.1142/s0129054123430049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the state complexity of languages resulting from the cascade product of two minimal deterministic finite automata with [Formula: see text] and [Formula: see text] states, respectively. More precisely we study the magic number problem of the cascade product operation and show what range of complexities can be produced in case the left automaton is unary, that is, has only a singleton letter alphabet. Here we distinguish the cases when the involved automata are reset automata, permutation automata, permutation-reset automata, or do not have any restriction on their structure. It turns out that the picture on the obtained state complexities of the cascade product is diverse, and for all cases, except where the left automaton is a unary permutation(-reset) or a deterministic finite automaton without structural restrictions, and the right one is a reset automaton or a deterministic finite automaton without structural restrictions, we are able to identify state sizes that cannot be reached — these numbers are called “magic.”\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054123430049\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054123430049","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
The Range of State Complexities of Languages Resulting from the Cascade Product — The Unary Case
We investigate the state complexity of languages resulting from the cascade product of two minimal deterministic finite automata with [Formula: see text] and [Formula: see text] states, respectively. More precisely we study the magic number problem of the cascade product operation and show what range of complexities can be produced in case the left automaton is unary, that is, has only a singleton letter alphabet. Here we distinguish the cases when the involved automata are reset automata, permutation automata, permutation-reset automata, or do not have any restriction on their structure. It turns out that the picture on the obtained state complexities of the cascade product is diverse, and for all cases, except where the left automaton is a unary permutation(-reset) or a deterministic finite automaton without structural restrictions, and the right one is a reset automaton or a deterministic finite automaton without structural restrictions, we are able to identify state sizes that cannot be reached — these numbers are called “magic.”
期刊介绍:
The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include:
- Algebraic theory of computing and formal systems
- Algorithm and system implementation issues
- Approximation, probabilistic, and randomized algorithms
- Automata and formal languages
- Automated deduction
- Combinatorics and graph theory
- Complexity theory
- Computational biology and bioinformatics
- Cryptography
- Database theory
- Data structures
- Design and analysis of algorithms
- DNA computing
- Foundations of computer security
- Foundations of high-performance computing