R. Ratnawati, S. Slamet, V. Wongso, J. Gunlazuardi, M. Ibadurrohman
{"title":"用于氢光生产的TiO2纳米粒子上Pt沉积方法(化学还原与光辅助沉积)的比较研究","authors":"R. Ratnawati, S. Slamet, V. Wongso, J. Gunlazuardi, M. Ibadurrohman","doi":"10.5614/j.eng.technol.sci.2022.54.6.12","DOIUrl":null,"url":null,"abstract":"In this paper, we report a comparative study on the methods (chemical reduction and photo-assisted deposition) of incorporating Pt onto TiO2 nanoparticles (TNP) for H2 generation. The phase structure of photocatalysts was scrutinized utilizing TEM and XRD. The degree of dispersion of Pt on the TNP is measured by a pulse chemisorption technique, using TPDRO equipment. Results provided by TEM images, EDX spectra, elemental mapping, and AAS confirmed the successful deposition of Pt on TNP. XRD patterns confirm an anatase and rutile crystallite structure, while UV-vis spectra show the reduction of bandgap from a typical value of 3.2 eV to ca. 2.9 eV. It is found that there is a correlation between the amount of Pt deposited on TNP and Pt dispersion with the H2 generation. The chemical reduction method offered a higher degree of Pt deposition, resulting in a 2.75 times larger amount of deposited Pt as compared to that resulted from photodeposition. This feature is perceived to contribute higher H2 yield (3283 µmol) at 1 w% of Pt loading","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comparative Study of Pt Depositing Methods (Chemical Reduction vs Photo-Assisted Deposition) onto TiO2 Nanoparticle for Hydrogen Photo-Production\",\"authors\":\"R. Ratnawati, S. Slamet, V. Wongso, J. Gunlazuardi, M. Ibadurrohman\",\"doi\":\"10.5614/j.eng.technol.sci.2022.54.6.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report a comparative study on the methods (chemical reduction and photo-assisted deposition) of incorporating Pt onto TiO2 nanoparticles (TNP) for H2 generation. The phase structure of photocatalysts was scrutinized utilizing TEM and XRD. The degree of dispersion of Pt on the TNP is measured by a pulse chemisorption technique, using TPDRO equipment. Results provided by TEM images, EDX spectra, elemental mapping, and AAS confirmed the successful deposition of Pt on TNP. XRD patterns confirm an anatase and rutile crystallite structure, while UV-vis spectra show the reduction of bandgap from a typical value of 3.2 eV to ca. 2.9 eV. It is found that there is a correlation between the amount of Pt deposited on TNP and Pt dispersion with the H2 generation. The chemical reduction method offered a higher degree of Pt deposition, resulting in a 2.75 times larger amount of deposited Pt as compared to that resulted from photodeposition. This feature is perceived to contribute higher H2 yield (3283 µmol) at 1 w% of Pt loading\",\"PeriodicalId\":15689,\"journal\":{\"name\":\"Journal of Engineering and Technological Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering and Technological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/j.eng.technol.sci.2022.54.6.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Technological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.eng.technol.sci.2022.54.6.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A Comparative Study of Pt Depositing Methods (Chemical Reduction vs Photo-Assisted Deposition) onto TiO2 Nanoparticle for Hydrogen Photo-Production
In this paper, we report a comparative study on the methods (chemical reduction and photo-assisted deposition) of incorporating Pt onto TiO2 nanoparticles (TNP) for H2 generation. The phase structure of photocatalysts was scrutinized utilizing TEM and XRD. The degree of dispersion of Pt on the TNP is measured by a pulse chemisorption technique, using TPDRO equipment. Results provided by TEM images, EDX spectra, elemental mapping, and AAS confirmed the successful deposition of Pt on TNP. XRD patterns confirm an anatase and rutile crystallite structure, while UV-vis spectra show the reduction of bandgap from a typical value of 3.2 eV to ca. 2.9 eV. It is found that there is a correlation between the amount of Pt deposited on TNP and Pt dispersion with the H2 generation. The chemical reduction method offered a higher degree of Pt deposition, resulting in a 2.75 times larger amount of deposited Pt as compared to that resulted from photodeposition. This feature is perceived to contribute higher H2 yield (3283 µmol) at 1 w% of Pt loading
期刊介绍:
Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.