具有三个超椭圆主框架的规则代数曲面

I. Mamieva
{"title":"具有三个超椭圆主框架的规则代数曲面","authors":"I. Mamieva","doi":"10.22363/1815-5235-2022-18-4-387-395","DOIUrl":null,"url":null,"abstract":"An opportunity of conversion of algebraic surfaces with a main frame from three superellipses of general type into ruled surfaces of several views is shown. It is necessary to take one, two, or all of three superellipses in the form of a rhombus, i.e. it is necessary to assume exponents in explicit algebraic equations of suitable superellipses equal to one. It was illustrated that having taken one and the same main frame from three plane curves lying in the main coordinate planes, one can construct three algebraic surfaces of different orders. So, it is possible to introduce into practice great number of ruled surfaces with the preliminary given main frame from three superellipses. Some of them must be in the form of straight lines. As a result, fifteen shapes, i.e. five threes of ruled algebraic surfaces with a main frame from three superellipses were obtained with the help of three explicit equations or with the help of three systems of parametric equations. These surfaces contain a polyhedron on given rhombus plane, some types of cylindroids and conoids, and ruled surfaces not described in scientific literature before. All surfaces were visualized for concrete examples. Earlier, Professor A.V. Korotich introduced into practice a new group of surfaces which he called “Ruled quasipolyhedrons from conoids.” Some of the ruled algebraic surfaces presented in this paper can be put in this group of ruled quasipolyhedrons.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ruled algebraic surfaces with a main frame from three superellipses\",\"authors\":\"I. Mamieva\",\"doi\":\"10.22363/1815-5235-2022-18-4-387-395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An opportunity of conversion of algebraic surfaces with a main frame from three superellipses of general type into ruled surfaces of several views is shown. It is necessary to take one, two, or all of three superellipses in the form of a rhombus, i.e. it is necessary to assume exponents in explicit algebraic equations of suitable superellipses equal to one. It was illustrated that having taken one and the same main frame from three plane curves lying in the main coordinate planes, one can construct three algebraic surfaces of different orders. So, it is possible to introduce into practice great number of ruled surfaces with the preliminary given main frame from three superellipses. Some of them must be in the form of straight lines. As a result, fifteen shapes, i.e. five threes of ruled algebraic surfaces with a main frame from three superellipses were obtained with the help of three explicit equations or with the help of three systems of parametric equations. These surfaces contain a polyhedron on given rhombus plane, some types of cylindroids and conoids, and ruled surfaces not described in scientific literature before. All surfaces were visualized for concrete examples. Earlier, Professor A.V. Korotich introduced into practice a new group of surfaces which he called “Ruled quasipolyhedrons from conoids.” Some of the ruled algebraic surfaces presented in this paper can be put in this group of ruled quasipolyhedrons.\",\"PeriodicalId\":32610,\"journal\":{\"name\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/1815-5235-2022-18-4-387-395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Mechanics of Engineering Constructions and Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/1815-5235-2022-18-4-387-395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

给出了将具有主框架的代数曲面由三个一般型超椭圆转化为若干视图直纹曲面的机会。有必要取一个、两个或全部三个超椭圆为菱形,即有必要假定合适的超椭圆的显式代数方程的指数等于1。说明了在主坐标平面上的三条平面曲线中取同一主框架,可以构造三个不同阶次的代数曲面。因此,利用三个超椭圆初步给出的主框架,可以将大量直纹曲面引入实践。它们中的一些一定是直线的形式。通过三个显式方程或三个参数方程组,得到了由三个超椭圆组成的15个形状,即5个带主框架的直纹代数曲面。这些曲面包括给定菱形平面上的多面体,某些类型的圆柱体和圆锥体,以及以前在科学文献中没有描述过的直纹曲面。所有的表面都是可视化的具体例子。早些时候,A.V. Korotich教授引入了一组新的曲面,他称之为“圆锥体的直棱拟多面体”。本文给出的一些直纹代数曲面可以归到这组直纹拟多面体中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ruled algebraic surfaces with a main frame from three superellipses
An opportunity of conversion of algebraic surfaces with a main frame from three superellipses of general type into ruled surfaces of several views is shown. It is necessary to take one, two, or all of three superellipses in the form of a rhombus, i.e. it is necessary to assume exponents in explicit algebraic equations of suitable superellipses equal to one. It was illustrated that having taken one and the same main frame from three plane curves lying in the main coordinate planes, one can construct three algebraic surfaces of different orders. So, it is possible to introduce into practice great number of ruled surfaces with the preliminary given main frame from three superellipses. Some of them must be in the form of straight lines. As a result, fifteen shapes, i.e. five threes of ruled algebraic surfaces with a main frame from three superellipses were obtained with the help of three explicit equations or with the help of three systems of parametric equations. These surfaces contain a polyhedron on given rhombus plane, some types of cylindroids and conoids, and ruled surfaces not described in scientific literature before. All surfaces were visualized for concrete examples. Earlier, Professor A.V. Korotich introduced into practice a new group of surfaces which he called “Ruled quasipolyhedrons from conoids.” Some of the ruled algebraic surfaces presented in this paper can be put in this group of ruled quasipolyhedrons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
26
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信