D. V. Volosnikov, I. I. Povolotskiy, P. V. Skripov
{"title":"溶液不稳定状态衰减对传热的增强作用","authors":"D. V. Volosnikov, I. I. Povolotskiy, P. V. Skripov","doi":"10.1134/S1810232823010010","DOIUrl":null,"url":null,"abstract":"<p>The article elucidates characteristic features of heat transfer during rapid transfer of single-phase solution beyond the liquid-liquid spinodal. It also investigates particularities of the thermal response accompanying decay of unstable state. The objects of the study were aqueous solutions of polypropylene glycols and ethylene glycol monobutyl ether. Controlled pulsed heating of probe was applied, based on the thermal mode of probe temperature stabilization at a given temperature <i>T</i>\n\t\t\t\t\t<sup>st</sup>. The temperature stabilization stage lasted for 20 to 100 ms; the temperature <i>T</i>\n\t\t\t\t\t<sup>st</sup> was increased step by step from the initial value <i>T</i>\n\t\t\t\t\t<sup>0</sup> up to 673–773 K. The values of the instantaneous coefficient of heat transfer to pure components and their solutions were calculated from the primary data. At a certain degree of superheating, a temperature-threshold effect of heat transfer enhancement up to 2–3 times was found, which is associated with the decay of unstable state of the solution. The fundamental possibility was revealed for determination of approximation for the lateral and upper spinodal branches, reconstructed on the basis of the characteristic change in the response signals. The concentration of the solution was changed step by step in the zone of compositions lying under the liquid-liquid equilibrium line.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"32 1","pages":"1 - 14"},"PeriodicalIF":1.3000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Heat Transfer Due to Decay of Unstable State of Solution\",\"authors\":\"D. V. Volosnikov, I. I. Povolotskiy, P. V. Skripov\",\"doi\":\"10.1134/S1810232823010010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article elucidates characteristic features of heat transfer during rapid transfer of single-phase solution beyond the liquid-liquid spinodal. It also investigates particularities of the thermal response accompanying decay of unstable state. The objects of the study were aqueous solutions of polypropylene glycols and ethylene glycol monobutyl ether. Controlled pulsed heating of probe was applied, based on the thermal mode of probe temperature stabilization at a given temperature <i>T</i>\\n\\t\\t\\t\\t\\t<sup>st</sup>. The temperature stabilization stage lasted for 20 to 100 ms; the temperature <i>T</i>\\n\\t\\t\\t\\t\\t<sup>st</sup> was increased step by step from the initial value <i>T</i>\\n\\t\\t\\t\\t\\t<sup>0</sup> up to 673–773 K. The values of the instantaneous coefficient of heat transfer to pure components and their solutions were calculated from the primary data. At a certain degree of superheating, a temperature-threshold effect of heat transfer enhancement up to 2–3 times was found, which is associated with the decay of unstable state of the solution. The fundamental possibility was revealed for determination of approximation for the lateral and upper spinodal branches, reconstructed on the basis of the characteristic change in the response signals. The concentration of the solution was changed step by step in the zone of compositions lying under the liquid-liquid equilibrium line.</p>\",\"PeriodicalId\":627,\"journal\":{\"name\":\"Journal of Engineering Thermophysics\",\"volume\":\"32 1\",\"pages\":\"1 - 14\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1810232823010010\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232823010010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Enhancement of Heat Transfer Due to Decay of Unstable State of Solution
The article elucidates characteristic features of heat transfer during rapid transfer of single-phase solution beyond the liquid-liquid spinodal. It also investigates particularities of the thermal response accompanying decay of unstable state. The objects of the study were aqueous solutions of polypropylene glycols and ethylene glycol monobutyl ether. Controlled pulsed heating of probe was applied, based on the thermal mode of probe temperature stabilization at a given temperature Tst. The temperature stabilization stage lasted for 20 to 100 ms; the temperature Tst was increased step by step from the initial value T0 up to 673–773 K. The values of the instantaneous coefficient of heat transfer to pure components and their solutions were calculated from the primary data. At a certain degree of superheating, a temperature-threshold effect of heat transfer enhancement up to 2–3 times was found, which is associated with the decay of unstable state of the solution. The fundamental possibility was revealed for determination of approximation for the lateral and upper spinodal branches, reconstructed on the basis of the characteristic change in the response signals. The concentration of the solution was changed step by step in the zone of compositions lying under the liquid-liquid equilibrium line.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.