{"title":"以粉煤灰为烧结添加剂制备莫来石粘结多孔SiC陶瓷膜的渗透性能和废水过滤性能","authors":"D. Das, N. Kayal, M. Innocentini","doi":"10.1080/0371750X.2021.1934122","DOIUrl":null,"url":null,"abstract":"With SiC as starting powder, waste fly ash as sintering additive and metal oxide as catalyst, mullite bonded SiC ceramic membrane was prepared at 1000°C using the conventional solid-state reaction method. Permeability parameters in both air and water flow tests were obtained using laboratory made set-up and the pure water permeability was measured at variable transmembrane pressures. The membrane exhibited excellent pure water flux of 5261 L.m−2.h−1.bar−1 with open porosity of 44.7% and mean pore size of 3.7 μm. With this membrane a high oil removal efficiency of 91% was achieved from the kitchen wastewater having initial oil concentration of 1657 mg.L−1. The method developed here is technologically benign and addressed prevention of environmental pollution by utilizing hazardous waste material for fabrication of porous SiC ceramic membrane at a reduced cost with good mechanical, permeability characteristics and wastewater filtration efficiency. Hence, the proposed method for SiC membranes has good sustainability and is scalable for oily wastewater treatment. GRAPHICAL ABSTRACT","PeriodicalId":23233,"journal":{"name":"Transactions of the Indian Ceramic Society","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Permeability Behavior and Wastewater Filtration Performance of Mullite Bonded Porous SiC Ceramic Membrane Prepared Using Coal Fly Ash as Sintering Additive\",\"authors\":\"D. Das, N. Kayal, M. Innocentini\",\"doi\":\"10.1080/0371750X.2021.1934122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With SiC as starting powder, waste fly ash as sintering additive and metal oxide as catalyst, mullite bonded SiC ceramic membrane was prepared at 1000°C using the conventional solid-state reaction method. Permeability parameters in both air and water flow tests were obtained using laboratory made set-up and the pure water permeability was measured at variable transmembrane pressures. The membrane exhibited excellent pure water flux of 5261 L.m−2.h−1.bar−1 with open porosity of 44.7% and mean pore size of 3.7 μm. With this membrane a high oil removal efficiency of 91% was achieved from the kitchen wastewater having initial oil concentration of 1657 mg.L−1. The method developed here is technologically benign and addressed prevention of environmental pollution by utilizing hazardous waste material for fabrication of porous SiC ceramic membrane at a reduced cost with good mechanical, permeability characteristics and wastewater filtration efficiency. Hence, the proposed method for SiC membranes has good sustainability and is scalable for oily wastewater treatment. GRAPHICAL ABSTRACT\",\"PeriodicalId\":23233,\"journal\":{\"name\":\"Transactions of the Indian Ceramic Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Indian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/0371750X.2021.1934122\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Indian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/0371750X.2021.1934122","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Permeability Behavior and Wastewater Filtration Performance of Mullite Bonded Porous SiC Ceramic Membrane Prepared Using Coal Fly Ash as Sintering Additive
With SiC as starting powder, waste fly ash as sintering additive and metal oxide as catalyst, mullite bonded SiC ceramic membrane was prepared at 1000°C using the conventional solid-state reaction method. Permeability parameters in both air and water flow tests were obtained using laboratory made set-up and the pure water permeability was measured at variable transmembrane pressures. The membrane exhibited excellent pure water flux of 5261 L.m−2.h−1.bar−1 with open porosity of 44.7% and mean pore size of 3.7 μm. With this membrane a high oil removal efficiency of 91% was achieved from the kitchen wastewater having initial oil concentration of 1657 mg.L−1. The method developed here is technologically benign and addressed prevention of environmental pollution by utilizing hazardous waste material for fabrication of porous SiC ceramic membrane at a reduced cost with good mechanical, permeability characteristics and wastewater filtration efficiency. Hence, the proposed method for SiC membranes has good sustainability and is scalable for oily wastewater treatment. GRAPHICAL ABSTRACT
期刊介绍:
Transactions of the Indian Ceramic Society is a quarterly Journal devoted to current scientific research, technology and industry-related news on glass and ceramics. The Journal covers subjects such as the chemical, mechanical, optical, electronic and spectroscopic properties of glass and ceramics, and characterization of materials belonging to this family.
The Editor invites original research papers, topical reviews, opinions and achievements, as well as industry profiles for publication. The contributions should be accompanied by abstracts, keywords and other details, as outlined in the Instructions for Authors section. News, views and other comments on activities of specific industries and organizations, and also analyses of industrial scenarios are also welcome.