二次Dehn函数群的算法问题

Pub Date : 2020-12-18 DOI:10.4171/ggd/694
A. Olshanskii, M. Sapir
{"title":"二次Dehn函数群的算法问题","authors":"A. Olshanskii, M. Sapir","doi":"10.4171/ggd/694","DOIUrl":null,"url":null,"abstract":"We construct and study finitely presented groups with quadratic Dehn function (QD-groups) and present the following applications of the method developed in our recent papers. (1) The isomorphism problem is undecidable in the class of QDgroups. (2) For every recursive function f , there is a QD-group G containing a finitely presented subgroup H whose Dehn function grows faster than f . (3) There exists a group with undecidable conjugacy problem but decidable power conjugacy problem; this group is QD.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Algorithmic problems in groups with quadratic Dehn function\",\"authors\":\"A. Olshanskii, M. Sapir\",\"doi\":\"10.4171/ggd/694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct and study finitely presented groups with quadratic Dehn function (QD-groups) and present the following applications of the method developed in our recent papers. (1) The isomorphism problem is undecidable in the class of QDgroups. (2) For every recursive function f , there is a QD-group G containing a finitely presented subgroup H whose Dehn function grows faster than f . (3) There exists a group with undecidable conjugacy problem but decidable power conjugacy problem; this group is QD.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们构造和研究了具有二次Dehn函数的有限呈现群(QD群),并介绍了我们最近论文中开发的方法的以下应用。(1) 同构问题在量子群类中是不可判定的。(2) 对于每个递归函数f,都有一个QD群G,它包含一个有限存在的子群H,其Dehn函数的增长速度快于f。(3) 存在一个具有不可判定共轭问题但具有可判定幂共轭问题的群;这个组是QD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Algorithmic problems in groups with quadratic Dehn function
We construct and study finitely presented groups with quadratic Dehn function (QD-groups) and present the following applications of the method developed in our recent papers. (1) The isomorphism problem is undecidable in the class of QDgroups. (2) For every recursive function f , there is a QD-group G containing a finitely presented subgroup H whose Dehn function grows faster than f . (3) There exists a group with undecidable conjugacy problem but decidable power conjugacy problem; this group is QD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信