双向量束上类Weil函子的双线性半基本切值形式的完全提升

IF 0.6 4区 数学 Q3 MATHEMATICS
W. Mikulski
{"title":"双向量束上类Weil函子的双线性半基本切值形式的完全提升","authors":"W. Mikulski","doi":"10.33044/revuma.1619","DOIUrl":null,"url":null,"abstract":". Let F be a product preserving gauge bundle functor on double vector bundles. We introduce the complete lifting F ϕ : FK → ∧ p T ∗ FM ⊗ TFK of a double-linear semi-basic tangent valued p -form ϕ : K → ∧ p T ∗ M ⊗ TK on a double vector bundle K with base M . We prove that this com- plete lifting preserves the Frolicher–Nijenhuis bracket. We apply the results obtained to double-linear connections.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Complete lifting of double-linear semi-basic tangent valued forms to Weil like functors on double vector bundles\",\"authors\":\"W. Mikulski\",\"doi\":\"10.33044/revuma.1619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let F be a product preserving gauge bundle functor on double vector bundles. We introduce the complete lifting F ϕ : FK → ∧ p T ∗ FM ⊗ TFK of a double-linear semi-basic tangent valued p -form ϕ : K → ∧ p T ∗ M ⊗ TK on a double vector bundle K with base M . We prove that this com- plete lifting preserves the Frolicher–Nijenhuis bracket. We apply the results obtained to double-linear connections.\",\"PeriodicalId\":54469,\"journal\":{\"name\":\"Revista De La Union Matematica Argentina\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Union Matematica Argentina\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.33044/revuma.1619\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/revuma.1619","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设F是双向量丛上的保乘积规范丛函子。我们介绍了完整的提升F→ ∧ 双线性半基本切值p-形式的pT*FM⊗TFK→ ∧ pT*M⊗TK在基为M的双向量丛K上。我们证明了这种完全提升保留了Frolicher–Nijenhuis支架。我们将所得结果应用于双线性连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete lifting of double-linear semi-basic tangent valued forms to Weil like functors on double vector bundles
. Let F be a product preserving gauge bundle functor on double vector bundles. We introduce the complete lifting F ϕ : FK → ∧ p T ∗ FM ⊗ TFK of a double-linear semi-basic tangent valued p -form ϕ : K → ∧ p T ∗ M ⊗ TK on a double vector bundle K with base M . We prove that this com- plete lifting preserves the Frolicher–Nijenhuis bracket. We apply the results obtained to double-linear connections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信