具有同余条件的定量丢番图近似

IF 0.3 4区 数学 Q4 MATHEMATICS
Mahbub Alam, Anish Ghosh, Shucheng Yu
{"title":"具有同余条件的定量丢番图近似","authors":"Mahbub Alam, Anish Ghosh, Shucheng Yu","doi":"10.5802/jtnb.1161","DOIUrl":null,"url":null,"abstract":"In this short paper we prove a quantitative version of the Khintchine-Groshev Theorem with congruence conditions. Our argument relies on a classical argument of Schmidt on counting generic lattice points, which in turn relies on a certain variance bound on the space of lattices.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Quantitative Diophantine approximation with congruence conditions\",\"authors\":\"Mahbub Alam, Anish Ghosh, Shucheng Yu\",\"doi\":\"10.5802/jtnb.1161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this short paper we prove a quantitative version of the Khintchine-Groshev Theorem with congruence conditions. Our argument relies on a classical argument of Schmidt on counting generic lattice points, which in turn relies on a certain variance bound on the space of lattices.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1161\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1161","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

在这篇简短的文章中,我们用同余条件证明了Khintchine-Groshev定理的一个定量版本。我们的论证依赖于Schmidt关于计算一般格点的经典论证,而后者又依赖于格空间上的某个方差界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative Diophantine approximation with congruence conditions
In this short paper we prove a quantitative version of the Khintchine-Groshev Theorem with congruence conditions. Our argument relies on a classical argument of Schmidt on counting generic lattice points, which in turn relies on a certain variance bound on the space of lattices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信