{"title":"需求引出中的机器学习:文献综述","authors":"Cheligeer Cheligeer, Jingwei Huang, Guosong Wu, N. Bhuiyan, Yuan Xu, Yong Zeng","doi":"10.1017/S0890060422000166","DOIUrl":null,"url":null,"abstract":"Abstract A growing trend in requirements elicitation is the use of machine learning (ML) techniques to automate the cumbersome requirement handling process. This literature review summarizes and analyzes studies that incorporate ML and natural language processing (NLP) into demand elicitation. We answer the following research questions: (1) What requirement elicitation activities are supported by ML? (2) What data sources are used to build ML-based requirement solutions? (3) What technologies, algorithms, and tools are used to build ML-based requirement elicitation? (4) How to construct an ML-based requirements elicitation method? (5) What are the available tools to support ML-based requirements elicitation methodology? Keywords derived from these research questions led to 975 records initially retrieved from 7 scientific search engines. Finally, 86 articles were selected for inclusion in the review. As the primary research finding, we identified 15 ML-based requirement elicitation tasks and classified them into four categories. Twelve different data sources for building a data-driven model are identified and classified in this literature review. In addition, we categorized the techniques for constructing ML-based requirement elicitation methods into five parts, which are Data Cleansing and Preprocessing, Textual Feature Extraction, Learning, Evaluation, and Tools. More specifically, 3 categories of preprocessing methods, 3 different feature extraction strategies, 12 different families of learning methods, 2 different evaluation strategies, and various off-the-shelf publicly available tools were identified. Furthermore, we discussed the limitations of the current studies and proposed eight potential directions for future research.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Machine learning in requirements elicitation: a literature review\",\"authors\":\"Cheligeer Cheligeer, Jingwei Huang, Guosong Wu, N. Bhuiyan, Yuan Xu, Yong Zeng\",\"doi\":\"10.1017/S0890060422000166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A growing trend in requirements elicitation is the use of machine learning (ML) techniques to automate the cumbersome requirement handling process. This literature review summarizes and analyzes studies that incorporate ML and natural language processing (NLP) into demand elicitation. We answer the following research questions: (1) What requirement elicitation activities are supported by ML? (2) What data sources are used to build ML-based requirement solutions? (3) What technologies, algorithms, and tools are used to build ML-based requirement elicitation? (4) How to construct an ML-based requirements elicitation method? (5) What are the available tools to support ML-based requirements elicitation methodology? Keywords derived from these research questions led to 975 records initially retrieved from 7 scientific search engines. Finally, 86 articles were selected for inclusion in the review. As the primary research finding, we identified 15 ML-based requirement elicitation tasks and classified them into four categories. Twelve different data sources for building a data-driven model are identified and classified in this literature review. In addition, we categorized the techniques for constructing ML-based requirement elicitation methods into five parts, which are Data Cleansing and Preprocessing, Textual Feature Extraction, Learning, Evaluation, and Tools. More specifically, 3 categories of preprocessing methods, 3 different feature extraction strategies, 12 different families of learning methods, 2 different evaluation strategies, and various off-the-shelf publicly available tools were identified. Furthermore, we discussed the limitations of the current studies and proposed eight potential directions for future research.\",\"PeriodicalId\":50951,\"journal\":{\"name\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0890060422000166\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060422000166","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Machine learning in requirements elicitation: a literature review
Abstract A growing trend in requirements elicitation is the use of machine learning (ML) techniques to automate the cumbersome requirement handling process. This literature review summarizes and analyzes studies that incorporate ML and natural language processing (NLP) into demand elicitation. We answer the following research questions: (1) What requirement elicitation activities are supported by ML? (2) What data sources are used to build ML-based requirement solutions? (3) What technologies, algorithms, and tools are used to build ML-based requirement elicitation? (4) How to construct an ML-based requirements elicitation method? (5) What are the available tools to support ML-based requirements elicitation methodology? Keywords derived from these research questions led to 975 records initially retrieved from 7 scientific search engines. Finally, 86 articles were selected for inclusion in the review. As the primary research finding, we identified 15 ML-based requirement elicitation tasks and classified them into four categories. Twelve different data sources for building a data-driven model are identified and classified in this literature review. In addition, we categorized the techniques for constructing ML-based requirement elicitation methods into five parts, which are Data Cleansing and Preprocessing, Textual Feature Extraction, Learning, Evaluation, and Tools. More specifically, 3 categories of preprocessing methods, 3 different feature extraction strategies, 12 different families of learning methods, 2 different evaluation strategies, and various off-the-shelf publicly available tools were identified. Furthermore, we discussed the limitations of the current studies and proposed eight potential directions for future research.
期刊介绍:
The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.