Vague图的规则支配及其应用研究

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Xiaolong Shi, Maryam Akhoundi, A. Talebi, M. Mojahedfar
{"title":"Vague图的规则支配及其应用研究","authors":"Xiaolong Shi, Maryam Akhoundi, A. Talebi, M. Mojahedfar","doi":"10.1155/2023/7098134","DOIUrl":null,"url":null,"abstract":"<jats:p>Vague graphs (VGs), which are a family of fuzzy graphs (FGs), are a well-organized and useful tool for capturing and resolving a range of real-world scenarios involving ambiguous data. In graph theory, a dominating set (DS) for a graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msup>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n <mo>=</mo>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mi>E</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is a subset <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi mathvariant=\"fraktur\">S</mi>\n </math>\n </jats:inline-formula> of the vertices <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>X</mi>\n </math>\n </jats:inline-formula> such that every vertex not in <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi mathvariant=\"fraktur\">S</mi>\n </math>\n </jats:inline-formula> is adjacent to at least one member of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi mathvariant=\"fraktur\">S</mi>\n </math>\n </jats:inline-formula>. The concept of DS in FGs has received the attention of many researchers due to its many applications in various fields such as computer science and electronic networks. In this paper, we introduce the notion of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <msub>\n <mrow>\n <mi>ϵ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>ϵ</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-Regular vague dominating set and provide some examples to explain various concepts introduced. Also, some results were discussed. Additionally, the <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <msub>\n <mrow>\n <mi>ϵ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>ϵ</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-Regular strong (weak) and independent strong (weak) domination sets for vague domination set (VDS) were presented with some theorems to support the context.</jats:p>","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Regular Domination in Vague Graphs with Application\",\"authors\":\"Xiaolong Shi, Maryam Akhoundi, A. Talebi, M. Mojahedfar\",\"doi\":\"10.1155/2023/7098134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>Vague graphs (VGs), which are a family of fuzzy graphs (FGs), are a well-organized and useful tool for capturing and resolving a range of real-world scenarios involving ambiguous data. In graph theory, a dominating set (DS) for a graph <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msup>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msup>\\n <mo>=</mo>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>E</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is a subset <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi mathvariant=\\\"fraktur\\\">S</mi>\\n </math>\\n </jats:inline-formula> of the vertices <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>X</mi>\\n </math>\\n </jats:inline-formula> such that every vertex not in <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi mathvariant=\\\"fraktur\\\">S</mi>\\n </math>\\n </jats:inline-formula> is adjacent to at least one member of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi mathvariant=\\\"fraktur\\\">S</mi>\\n </math>\\n </jats:inline-formula>. The concept of DS in FGs has received the attention of many researchers due to its many applications in various fields such as computer science and electronic networks. In this paper, we introduce the notion of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n <mo>,</mo>\\n <mn>2</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>-Regular vague dominating set and provide some examples to explain various concepts introduced. Also, some results were discussed. Additionally, the <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n <mo>,</mo>\\n <mn>2</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>-Regular strong (weak) and independent strong (weak) domination sets for vague domination set (VDS) were presented with some theorems to support the context.</jats:p>\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7098134\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/7098134","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

模糊图(VGs)是一类模糊图(FG),是一种组织良好且有用的工具,用于捕捉和解决一系列涉及模糊数据的真实世界场景。在图论中,图G*=X的一个支配集(DS),E是顶点X的子集S,使得每个不在S中的顶点与S的至少一个成员相邻。DS在FGs中的概念由于其在计算机科学和电子网络等各个领域的许多应用而受到许多研究人员的关注。在本文中,我们引入了ε的概念1.⑪2,2-正则模糊支配集,并举例说明引入的各种概念。并对一些结果进行了讨论。此外,ε1,⑪2给出了模糊控制集(VDS)的2-正则强(弱)和独立强(弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Regular Domination in Vague Graphs with Application
Vague graphs (VGs), which are a family of fuzzy graphs (FGs), are a well-organized and useful tool for capturing and resolving a range of real-world scenarios involving ambiguous data. In graph theory, a dominating set (DS) for a graph G = X , E is a subset S of the vertices X such that every vertex not in S is adjacent to at least one member of S . The concept of DS in FGs has received the attention of many researchers due to its many applications in various fields such as computer science and electronic networks. In this paper, we introduce the notion of ϵ 1 , ϵ 2 , 2 -Regular vague dominating set and provide some examples to explain various concepts introduced. Also, some results were discussed. Additionally, the ϵ 1 , ϵ 2 , 2 -Regular strong (weak) and independent strong (weak) domination sets for vague domination set (VDS) were presented with some theorems to support the context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信