奇异势Caginalp相场模型的吸引子

IF 0.8 4区 数学
Alain Miranville and Charbel Wehbe
{"title":"奇异势Caginalp相场模型的吸引子","authors":"Alain Miranville and Charbel Wehbe","doi":"10.4208/JMS.V51N4.18.01","DOIUrl":null,"url":null,"abstract":"We consider a phase field model based on a generalization of the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Neumann boundary conditions. The originality here, compared with previous works, is that we obtain global in time and dissipative estimates, so that, in particular, we prove, in one and two space dimensions, the existence of a unique solution which is strictly separated from the singularities of the nonlinear term, as well as the existence of the finite-dimensional global attractor and of exponential attractors. In three space dimensions, we prove the existence of a solution. AMS subject classifications: 35B40, 35B41, 35K51, 80A22, 80A20, 35Q53, 45K05, 35K55, 35G30, 92D50","PeriodicalId":43526,"journal":{"name":"数学研究","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Attractors for a Caginalp Phase-field Model with Singular Potential\",\"authors\":\"Alain Miranville and Charbel Wehbe\",\"doi\":\"10.4208/JMS.V51N4.18.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a phase field model based on a generalization of the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Neumann boundary conditions. The originality here, compared with previous works, is that we obtain global in time and dissipative estimates, so that, in particular, we prove, in one and two space dimensions, the existence of a unique solution which is strictly separated from the singularities of the nonlinear term, as well as the existence of the finite-dimensional global attractor and of exponential attractors. In three space dimensions, we prove the existence of a solution. AMS subject classifications: 35B40, 35B41, 35K51, 80A22, 80A20, 35Q53, 45K05, 35K55, 35G30, 92D50\",\"PeriodicalId\":43526,\"journal\":{\"name\":\"数学研究\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/JMS.V51N4.18.01\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/JMS.V51N4.18.01","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了一个基于Maxwell-Cattaneo热传导定律的推广的相场模型,该模型具有与Neumann边界条件相关的对数非线性。与以前的工作相比,这里的独创性在于,我们获得了全局时间和耗散估计,因此,特别是,我们在一个和两个空间维度上证明了与非线性项的奇异性严格分离的唯一解的存在性,以及有限维全局吸引子和指数吸引子的存在性。在三维空间中,我们证明了一个解的存在性。AMS受试者分类:35B40、35B41、35K51、80A22、80A20、35Q53、45K05、35K55、35G30、92D50
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attractors for a Caginalp Phase-field Model with Singular Potential
We consider a phase field model based on a generalization of the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Neumann boundary conditions. The originality here, compared with previous works, is that we obtain global in time and dissipative estimates, so that, in particular, we prove, in one and two space dimensions, the existence of a unique solution which is strictly separated from the singularities of the nonlinear term, as well as the existence of the finite-dimensional global attractor and of exponential attractors. In three space dimensions, we prove the existence of a solution. AMS subject classifications: 35B40, 35B41, 35K51, 80A22, 80A20, 35Q53, 45K05, 35K55, 35G30, 92D50
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
数学研究
数学研究 MATHEMATICS-
自引率
0.00%
发文量
1109
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信