{"title":"$p$-进环$C^*$-代数的缠绕自同态的熵和指标","authors":"Valeriano Aiello, S. Rossi","doi":"10.4064/sm201125-9-2","DOIUrl":null,"url":null,"abstract":"For $p\\geq 2$, the $p$-adic ring $C^*$-algebra $\\mathcal{Q}_p$ is the universal $C^*$-algebra generated by a unitary $U$ and an isometry $S_p$ such that $S_pU=U^pS_p$ and $\\sum_{l=0}^{p-1}U^lS_pS_p^*U^{-l}=1$. For any $k$ coprime with $p$ we define an endomorphism $\\chi_k\\in{\\rm End}(\\mathcal{Q}_p)$ by setting $\\chi_k(U):=U^k$ and $\\chi_k(S_p):=S_p$. We then compute the entropy of $\\chi_k$, which turns out to be $\\log |k|$. Finally, for selected values of $k$ we also compute the Watatani index of $\\chi_k$ showing that the entropy is the natural logarithm of the index.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the entropy and index of the winding endomorphisms of $p$-adic ring $C^*$-algebras\",\"authors\":\"Valeriano Aiello, S. Rossi\",\"doi\":\"10.4064/sm201125-9-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For $p\\\\geq 2$, the $p$-adic ring $C^*$-algebra $\\\\mathcal{Q}_p$ is the universal $C^*$-algebra generated by a unitary $U$ and an isometry $S_p$ such that $S_pU=U^pS_p$ and $\\\\sum_{l=0}^{p-1}U^lS_pS_p^*U^{-l}=1$. For any $k$ coprime with $p$ we define an endomorphism $\\\\chi_k\\\\in{\\\\rm End}(\\\\mathcal{Q}_p)$ by setting $\\\\chi_k(U):=U^k$ and $\\\\chi_k(S_p):=S_p$. We then compute the entropy of $\\\\chi_k$, which turns out to be $\\\\log |k|$. Finally, for selected values of $k$ we also compute the Watatani index of $\\\\chi_k$ showing that the entropy is the natural logarithm of the index.\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm201125-9-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm201125-9-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the entropy and index of the winding endomorphisms of $p$-adic ring $C^*$-algebras
For $p\geq 2$, the $p$-adic ring $C^*$-algebra $\mathcal{Q}_p$ is the universal $C^*$-algebra generated by a unitary $U$ and an isometry $S_p$ such that $S_pU=U^pS_p$ and $\sum_{l=0}^{p-1}U^lS_pS_p^*U^{-l}=1$. For any $k$ coprime with $p$ we define an endomorphism $\chi_k\in{\rm End}(\mathcal{Q}_p)$ by setting $\chi_k(U):=U^k$ and $\chi_k(S_p):=S_p$. We then compute the entropy of $\chi_k$, which turns out to be $\log |k|$. Finally, for selected values of $k$ we also compute the Watatani index of $\chi_k$ showing that the entropy is the natural logarithm of the index.
期刊介绍:
The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.