$p$-进环$C^*$-代数的缠绕自同态的熵和指标

IF 0.7 3区 数学 Q2 MATHEMATICS
Valeriano Aiello, S. Rossi
{"title":"$p$-进环$C^*$-代数的缠绕自同态的熵和指标","authors":"Valeriano Aiello, S. Rossi","doi":"10.4064/sm201125-9-2","DOIUrl":null,"url":null,"abstract":"For $p\\geq 2$, the $p$-adic ring $C^*$-algebra $\\mathcal{Q}_p$ is the universal $C^*$-algebra generated by a unitary $U$ and an isometry $S_p$ such that $S_pU=U^pS_p$ and $\\sum_{l=0}^{p-1}U^lS_pS_p^*U^{-l}=1$. For any $k$ coprime with $p$ we define an endomorphism $\\chi_k\\in{\\rm End}(\\mathcal{Q}_p)$ by setting $\\chi_k(U):=U^k$ and $\\chi_k(S_p):=S_p$. We then compute the entropy of $\\chi_k$, which turns out to be $\\log |k|$. Finally, for selected values of $k$ we also compute the Watatani index of $\\chi_k$ showing that the entropy is the natural logarithm of the index.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the entropy and index of the winding endomorphisms of $p$-adic ring $C^*$-algebras\",\"authors\":\"Valeriano Aiello, S. Rossi\",\"doi\":\"10.4064/sm201125-9-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For $p\\\\geq 2$, the $p$-adic ring $C^*$-algebra $\\\\mathcal{Q}_p$ is the universal $C^*$-algebra generated by a unitary $U$ and an isometry $S_p$ such that $S_pU=U^pS_p$ and $\\\\sum_{l=0}^{p-1}U^lS_pS_p^*U^{-l}=1$. For any $k$ coprime with $p$ we define an endomorphism $\\\\chi_k\\\\in{\\\\rm End}(\\\\mathcal{Q}_p)$ by setting $\\\\chi_k(U):=U^k$ and $\\\\chi_k(S_p):=S_p$. We then compute the entropy of $\\\\chi_k$, which turns out to be $\\\\log |k|$. Finally, for selected values of $k$ we also compute the Watatani index of $\\\\chi_k$ showing that the entropy is the natural logarithm of the index.\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm201125-9-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm201125-9-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

对于$p\geq 2$, $p$ -adic环$C^*$ -algebra $\mathcal{Q}_p$是由一个幺正$U$和一个等距$S_p$生成的普数$C^*$ -代数,使得$S_pU=U^pS_p$和$\sum_{l=0}^{p-1}U^lS_pS_p^*U^{-l}=1$。对于任何具有$p$的$k$协素数,我们通过设置$\chi_k(U):=U^k$和$\chi_k(S_p):=S_p$来定义一个自同态$\chi_k\in{\rm End}(\mathcal{Q}_p)$。然后我们计算$\chi_k$的熵,结果是$\log |k|$。最后,对于$k$的选定值,我们还计算了$\chi_k$的Watatani指数,表明熵是该指数的自然对数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the entropy and index of the winding endomorphisms of $p$-adic ring $C^*$-algebras
For $p\geq 2$, the $p$-adic ring $C^*$-algebra $\mathcal{Q}_p$ is the universal $C^*$-algebra generated by a unitary $U$ and an isometry $S_p$ such that $S_pU=U^pS_p$ and $\sum_{l=0}^{p-1}U^lS_pS_p^*U^{-l}=1$. For any $k$ coprime with $p$ we define an endomorphism $\chi_k\in{\rm End}(\mathcal{Q}_p)$ by setting $\chi_k(U):=U^k$ and $\chi_k(S_p):=S_p$. We then compute the entropy of $\chi_k$, which turns out to be $\log |k|$. Finally, for selected values of $k$ we also compute the Watatani index of $\chi_k$ showing that the entropy is the natural logarithm of the index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信