一阶自回归的测量误差

Q2 Decision Sciences
P. Franses
{"title":"一阶自回归的测量误差","authors":"P. Franses","doi":"10.47654/v24y2020i2p1-14","DOIUrl":null,"url":null,"abstract":"The Ordinary Least Squares (OLS) estimator for the slope parameter in a first-order autoregressive model is biased when the variable is measured with error. Such an error may occur with revisions of macroeconomic data. This paper illustrates and proposes a simple procedure to alleviate the bias, and is based on Total Least Squares (TLS). TLS is, in general, consistent, and also works well in small samples. Simulation experiments and an empirical example show the usefulness of this method.","PeriodicalId":38875,"journal":{"name":"Advances in Decision Sciences","volume":"24 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Measurement Error in a First-order Autoregression\",\"authors\":\"P. Franses\",\"doi\":\"10.47654/v24y2020i2p1-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ordinary Least Squares (OLS) estimator for the slope parameter in a first-order autoregressive model is biased when the variable is measured with error. Such an error may occur with revisions of macroeconomic data. This paper illustrates and proposes a simple procedure to alleviate the bias, and is based on Total Least Squares (TLS). TLS is, in general, consistent, and also works well in small samples. Simulation experiments and an empirical example show the usefulness of this method.\",\"PeriodicalId\":38875,\"journal\":{\"name\":\"Advances in Decision Sciences\",\"volume\":\"24 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Decision Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47654/v24y2020i2p1-14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47654/v24y2020i2p1-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1

摘要

一阶自回归模型中斜率参数的普通最小二乘(OLS)估计器在测量变量时存在误差。这种错误可能发生在宏观经济数据的修订中。本文阐述并提出了一种基于总最小二乘法(TLS)的简单程序来减轻偏差。TLS通常是一致的,在小样本中也能很好地工作。仿真实验和实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement Error in a First-order Autoregression
The Ordinary Least Squares (OLS) estimator for the slope parameter in a first-order autoregressive model is biased when the variable is measured with error. Such an error may occur with revisions of macroeconomic data. This paper illustrates and proposes a simple procedure to alleviate the bias, and is based on Total Least Squares (TLS). TLS is, in general, consistent, and also works well in small samples. Simulation experiments and an empirical example show the usefulness of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Decision Sciences
Advances in Decision Sciences Mathematics-Applied Mathematics
CiteScore
4.70
自引率
0.00%
发文量
18
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信