Schrödinger和含陷波方程反问题的稳定性估计

IF 1.3 2区 数学 Q1 MATHEMATICS
V'ictor Arnaiz, C. Guillarmou
{"title":"Schrödinger和含陷波方程反问题的稳定性估计","authors":"V'ictor Arnaiz, C. Guillarmou","doi":"10.4171/rmi/1327","DOIUrl":null,"url":null,"abstract":". For a class of Riemannian manifolds with boundary that includes all negatively curved manifolds with strictly convex boundary, we establish H¨older type stability estimates in the geometric inverse problem of determining the electric potential or the conformal factor from the Dirichlet-to-Neumann map associated with the Schr¨odinger equation and the wave equation. The novelty in this result lies in the fact that we allow some geodesics to be trapped inside the manifold and have infinite length.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability estimates in inverse problems for the Schrödinger and wave equations with trapping\",\"authors\":\"V'ictor Arnaiz, C. Guillarmou\",\"doi\":\"10.4171/rmi/1327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". For a class of Riemannian manifolds with boundary that includes all negatively curved manifolds with strictly convex boundary, we establish H¨older type stability estimates in the geometric inverse problem of determining the electric potential or the conformal factor from the Dirichlet-to-Neumann map associated with the Schr¨odinger equation and the wave equation. The novelty in this result lies in the fact that we allow some geodesics to be trapped inside the manifold and have infinite length.\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1327\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1327","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

.对于一类具有边界的黎曼流形,包括所有具有严格凸边界的负曲流形,我们在与Schr¨odinger方程和波动方程相关的Dirichlet到Neumann映射的确定电势或保角因子的几何逆问题中建立了H¨older型稳定性估计。这个结果的新颖之处在于,我们允许一些测地线被困在流形内,并且具有有限的长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability estimates in inverse problems for the Schrödinger and wave equations with trapping
. For a class of Riemannian manifolds with boundary that includes all negatively curved manifolds with strictly convex boundary, we establish H¨older type stability estimates in the geometric inverse problem of determining the electric potential or the conformal factor from the Dirichlet-to-Neumann map associated with the Schr¨odinger equation and the wave equation. The novelty in this result lies in the fact that we allow some geodesics to be trapped inside the manifold and have infinite length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信