Dorota Tomczak, M. Woźniak, I. Ratajczak, A. Sip, M. Baranowska, K. Bula, Iveta Čabalová, Tatiana Bubeníková, S. Borysiak
{"title":"咖啡因处理木材作为先进聚合物复合材料的创新填料","authors":"Dorota Tomczak, M. Woźniak, I. Ratajczak, A. Sip, M. Baranowska, K. Bula, Iveta Čabalová, Tatiana Bubeníková, S. Borysiak","doi":"10.1080/02773813.2023.2237498","DOIUrl":null,"url":null,"abstract":"Abstract Polymer composites, based on the wood flour originating from an invasive black cherry (Prunus serotina Ehrh.) treated with caffeine to achieve increased bio-resistance, were obtained in this study. The caffeine-treated wood had a significant effect on the supermolecular structure of polymer matrix, resulting in a high content of polymorphic β-PP phase, as well as an increase in nucleation activity of wood surface. The caffeine treatment of wood was an effective method of achieving increased resistance of composites to selected fungi and bacteria while maintaining good mechanical strength and thermal resistance. Addition of black cherry wood to polymer matrix induced inhibition of the release of volatile organic compounds. Increased resistance to fungi and bacteria depended on formation a significant amount of the β-phase up to 35% in the composite with 30% of caffeine-treated wooden filler and a simultaneous decrease in crystallinity from 52% for pure PP to 45% for mentioned composite.","PeriodicalId":17493,"journal":{"name":"Journal of Wood Chemistry and Technology","volume":"43 1","pages":"271 - 288"},"PeriodicalIF":1.7000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caffeine-treated wood as an innovative filler for advanced polymer composites\",\"authors\":\"Dorota Tomczak, M. Woźniak, I. Ratajczak, A. Sip, M. Baranowska, K. Bula, Iveta Čabalová, Tatiana Bubeníková, S. Borysiak\",\"doi\":\"10.1080/02773813.2023.2237498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Polymer composites, based on the wood flour originating from an invasive black cherry (Prunus serotina Ehrh.) treated with caffeine to achieve increased bio-resistance, were obtained in this study. The caffeine-treated wood had a significant effect on the supermolecular structure of polymer matrix, resulting in a high content of polymorphic β-PP phase, as well as an increase in nucleation activity of wood surface. The caffeine treatment of wood was an effective method of achieving increased resistance of composites to selected fungi and bacteria while maintaining good mechanical strength and thermal resistance. Addition of black cherry wood to polymer matrix induced inhibition of the release of volatile organic compounds. Increased resistance to fungi and bacteria depended on formation a significant amount of the β-phase up to 35% in the composite with 30% of caffeine-treated wooden filler and a simultaneous decrease in crystallinity from 52% for pure PP to 45% for mentioned composite.\",\"PeriodicalId\":17493,\"journal\":{\"name\":\"Journal of Wood Chemistry and Technology\",\"volume\":\"43 1\",\"pages\":\"271 - 288\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wood Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02773813.2023.2237498\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02773813.2023.2237498","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Caffeine-treated wood as an innovative filler for advanced polymer composites
Abstract Polymer composites, based on the wood flour originating from an invasive black cherry (Prunus serotina Ehrh.) treated with caffeine to achieve increased bio-resistance, were obtained in this study. The caffeine-treated wood had a significant effect on the supermolecular structure of polymer matrix, resulting in a high content of polymorphic β-PP phase, as well as an increase in nucleation activity of wood surface. The caffeine treatment of wood was an effective method of achieving increased resistance of composites to selected fungi and bacteria while maintaining good mechanical strength and thermal resistance. Addition of black cherry wood to polymer matrix induced inhibition of the release of volatile organic compounds. Increased resistance to fungi and bacteria depended on formation a significant amount of the β-phase up to 35% in the composite with 30% of caffeine-treated wooden filler and a simultaneous decrease in crystallinity from 52% for pure PP to 45% for mentioned composite.
期刊介绍:
The Journal of Wood Chemistry and Technology (JWCT) is focused on the rapid publication of research advances in the chemistry of bio-based materials and products, including all aspects of wood-based polymers, chemicals, materials, and technology. JWCT provides an international forum for researchers and manufacturers working in wood-based biopolymers and chemicals, synthesis and characterization, as well as the chemistry of biomass conversion and utilization.
JWCT primarily publishes original research papers and communications, and occasionally invited review articles and special issues. Special issues must summarize and analyze state-of-the-art developments within the field of biomass chemistry, or be in tribute to the career of a distinguished researcher. If you wish to suggest a special issue for the Journal, please email the Editor-in-Chief a detailed proposal that includes the topic, a list of potential contributors, and a time-line.