记录和监测北极海底垃圾的现状和未来建议

IF 2.7 3区 地球科学 Q2 ECOLOGY
B. E. Grøsvik, L. Buhl‐Mortensen, M. Bergmann, A. Booth, A. Gomiero, F. Galgani
{"title":"记录和监测北极海底垃圾的现状和未来建议","authors":"B. E. Grøsvik, L. Buhl‐Mortensen, M. Bergmann, A. Booth, A. Gomiero, F. Galgani","doi":"10.1139/as-2022-0017","DOIUrl":null,"url":null,"abstract":"Marine litter in the Arctic Basin is influenced by transport from Atlantic and Pacific waters. This highlights the need for harmonization of guidelines across regions. Monitoring can be used to assess temporal and spatial trends but can also be used to assess if environmental objectives are reached, for example to evaluate the effectiveness of mitigation measures. Seafloor monitoring by trawling needs substantial resources and specific sampling strategies to be sufficiently robust to demonstrate changes over time. Observation and visual evaluation in shallow and deep waters using towed camera systems, ROVs and submersibles are well suited for the Arctic environment. The use of imagery still needs to be adjusted through automation and image analyses, including deep learning approaches and data management, but will also serve to monitor areas with a rocky seafloor. We recommend developing a monitoring plan for seafloor litter by selecting representative sites for visual inspection that cover different depths and substrata in marine landscapes, and recording the litter collected or observed across all forms of seafloor sampling or imaging. We need better coverage and knowledge of status of seafloor litter for the whole Arctic and recommend initiatives to be taken for regions where such knowledge is lacking.","PeriodicalId":48575,"journal":{"name":"Arctic Science","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Status and future recommendations for recording and monitoring litter on the Arctic seafloor\",\"authors\":\"B. E. Grøsvik, L. Buhl‐Mortensen, M. Bergmann, A. Booth, A. Gomiero, F. Galgani\",\"doi\":\"10.1139/as-2022-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marine litter in the Arctic Basin is influenced by transport from Atlantic and Pacific waters. This highlights the need for harmonization of guidelines across regions. Monitoring can be used to assess temporal and spatial trends but can also be used to assess if environmental objectives are reached, for example to evaluate the effectiveness of mitigation measures. Seafloor monitoring by trawling needs substantial resources and specific sampling strategies to be sufficiently robust to demonstrate changes over time. Observation and visual evaluation in shallow and deep waters using towed camera systems, ROVs and submersibles are well suited for the Arctic environment. The use of imagery still needs to be adjusted through automation and image analyses, including deep learning approaches and data management, but will also serve to monitor areas with a rocky seafloor. We recommend developing a monitoring plan for seafloor litter by selecting representative sites for visual inspection that cover different depths and substrata in marine landscapes, and recording the litter collected or observed across all forms of seafloor sampling or imaging. We need better coverage and knowledge of status of seafloor litter for the whole Arctic and recommend initiatives to be taken for regions where such knowledge is lacking.\",\"PeriodicalId\":48575,\"journal\":{\"name\":\"Arctic Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arctic Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1139/as-2022-0017\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arctic Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/as-2022-0017","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

北极盆地的海洋垃圾受到大西洋和太平洋水域运输的影响。这突出表明需要统一各区域的指导方针。监测可用于评估时间和空间趋势,但也可用于评估是否达到环境目标,例如评估缓解措施的有效性。通过拖网捕鱼进行海底监测需要大量的资源和具体的采样策略,才能足够稳健地证明随时间的变化。使用拖曳式摄像系统、遥控潜水器和潜水器在浅水和深水中进行观测和视觉评估非常适合北极环境。图像的使用仍需通过自动化和图像分析进行调整,包括深度学习方法和数据管理,但也将用于监测海底岩石区域。我们建议制定海底垃圾监测计划,选择具有代表性的地点进行目视检查,覆盖海洋景观中的不同深度和底层,并记录通过各种形式的海底采样或成像收集或观察到的垃圾。我们需要更好地了解整个北极的海底垃圾状况,并建议在缺乏此类知识的地区采取主动行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Status and future recommendations for recording and monitoring litter on the Arctic seafloor
Marine litter in the Arctic Basin is influenced by transport from Atlantic and Pacific waters. This highlights the need for harmonization of guidelines across regions. Monitoring can be used to assess temporal and spatial trends but can also be used to assess if environmental objectives are reached, for example to evaluate the effectiveness of mitigation measures. Seafloor monitoring by trawling needs substantial resources and specific sampling strategies to be sufficiently robust to demonstrate changes over time. Observation and visual evaluation in shallow and deep waters using towed camera systems, ROVs and submersibles are well suited for the Arctic environment. The use of imagery still needs to be adjusted through automation and image analyses, including deep learning approaches and data management, but will also serve to monitor areas with a rocky seafloor. We recommend developing a monitoring plan for seafloor litter by selecting representative sites for visual inspection that cover different depths and substrata in marine landscapes, and recording the litter collected or observed across all forms of seafloor sampling or imaging. We need better coverage and knowledge of status of seafloor litter for the whole Arctic and recommend initiatives to be taken for regions where such knowledge is lacking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arctic Science
Arctic Science Agricultural and Biological Sciences-General Agricultural and Biological Sciences
CiteScore
5.00
自引率
12.10%
发文量
81
期刊介绍: Arctic Science is an interdisciplinary journal that publishes original peer-reviewed research from all areas of natural science and applied science & engineering related to northern Polar Regions. The focus on basic and applied science includes the traditional knowledge and observations of the indigenous peoples of the region as well as cutting-edge developments in biological, chemical, physical and engineering science in all northern environments. Reports on interdisciplinary research are encouraged. Special issues and sections dealing with important issues in northern polar science are also considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信