{"title":"对累积状态相关变化点的最快检测","authors":"Liang Cai","doi":"10.1080/07474946.2020.1766928","DOIUrl":null,"url":null,"abstract":"Abstract Motivated by the practical investigation of a state-dependent quickest detection problem in continuous time, especially for Brownian observations, we propose an asymptotic scheme in discrete time called a quickest detection scheme of an accumulated state-dependent change point. Here the state-dependent means that the priori probability of the change point depends on the current state. We reduce the problem to finding an optimal stopping time of a vector-valued Markov process. We illustrate the scheme via a numerical example.","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474946.2020.1766928","citationCount":"0","resultStr":"{\"title\":\"Quickest detection of an accumulated state-dependent change point\",\"authors\":\"Liang Cai\",\"doi\":\"10.1080/07474946.2020.1766928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Motivated by the practical investigation of a state-dependent quickest detection problem in continuous time, especially for Brownian observations, we propose an asymptotic scheme in discrete time called a quickest detection scheme of an accumulated state-dependent change point. Here the state-dependent means that the priori probability of the change point depends on the current state. We reduce the problem to finding an optimal stopping time of a vector-valued Markov process. We illustrate the scheme via a numerical example.\",\"PeriodicalId\":48879,\"journal\":{\"name\":\"Sequential Analysis-Design Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07474946.2020.1766928\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sequential Analysis-Design Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07474946.2020.1766928\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2020.1766928","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Quickest detection of an accumulated state-dependent change point
Abstract Motivated by the practical investigation of a state-dependent quickest detection problem in continuous time, especially for Brownian observations, we propose an asymptotic scheme in discrete time called a quickest detection scheme of an accumulated state-dependent change point. Here the state-dependent means that the priori probability of the change point depends on the current state. We reduce the problem to finding an optimal stopping time of a vector-valued Markov process. We illustrate the scheme via a numerical example.
期刊介绍:
The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches.
Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.