机械铣削制备铝-石墨烯复合粉体的微观结构和力学性能

IF 4.03
Jiangshan Zhang, Zhixin Chen, Jingwei Zhao, Zhengyi Jiang
{"title":"机械铣削制备铝-石墨烯复合粉体的微观结构和力学性能","authors":"Jiangshan Zhang,&nbsp;Zhixin Chen,&nbsp;Jingwei Zhao,&nbsp;Zhengyi Jiang","doi":"10.1186/s40759-018-0037-5","DOIUrl":null,"url":null,"abstract":"<p>Graphene has been reported to be a promising nanofiller in fabricating advanced metal matrix composites.</p><p>Graphene nanosheets (GNSs) have been incorporated into an aluminium matrix composite using mechanical milling and hot pressing in the current study.</p><p>The SEM observation shows that aluminium particles are firstly flattened into flakes, and then fractured/ rewelded into equiaxed particles as the ball milling progresses. The crystalline size is decreased and the lattice strain is increased during the ball milling, which are also intensified by the added GNSs. The hardness of the composite is increased by 115.1% with the incorporation of 1.0 vol. % GNSs.</p><p>The local stress induced by the hard GNSs accelerates the milling process. The X-Ray diffraction patterns show that the intensity ratio of (111) to (200) can reflect the preferred orientation of the particle mixture, and the evolution of I(111)/I(200) agrees well with the observed results using SEM. The increased hardness is mainly attributed to the refined microstructure and Orowan strengthening.</p>","PeriodicalId":696,"journal":{"name":"Mechanics of Advanced Materials and Modern Processes","volume":"4 1","pages":""},"PeriodicalIF":4.0300,"publicationDate":"2018-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40759-018-0037-5","citationCount":"33","resultStr":"{\"title\":\"Microstructure and mechanical properties of aluminium-graphene composite powders produced by mechanical milling\",\"authors\":\"Jiangshan Zhang,&nbsp;Zhixin Chen,&nbsp;Jingwei Zhao,&nbsp;Zhengyi Jiang\",\"doi\":\"10.1186/s40759-018-0037-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Graphene has been reported to be a promising nanofiller in fabricating advanced metal matrix composites.</p><p>Graphene nanosheets (GNSs) have been incorporated into an aluminium matrix composite using mechanical milling and hot pressing in the current study.</p><p>The SEM observation shows that aluminium particles are firstly flattened into flakes, and then fractured/ rewelded into equiaxed particles as the ball milling progresses. The crystalline size is decreased and the lattice strain is increased during the ball milling, which are also intensified by the added GNSs. The hardness of the composite is increased by 115.1% with the incorporation of 1.0 vol. % GNSs.</p><p>The local stress induced by the hard GNSs accelerates the milling process. The X-Ray diffraction patterns show that the intensity ratio of (111) to (200) can reflect the preferred orientation of the particle mixture, and the evolution of I(111)/I(200) agrees well with the observed results using SEM. The increased hardness is mainly attributed to the refined microstructure and Orowan strengthening.</p>\",\"PeriodicalId\":696,\"journal\":{\"name\":\"Mechanics of Advanced Materials and Modern Processes\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0300,\"publicationDate\":\"2018-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40759-018-0037-5\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Advanced Materials and Modern Processes\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40759-018-0037-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Advanced Materials and Modern Processes","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s40759-018-0037-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

据报道,石墨烯是一种很有前途的纳米填料,可用于制造先进的金属基复合材料。在目前的研究中,石墨烯纳米片(GNSs)已被纳入到铝基复合材料中,使用机械铣削和热压。SEM观察表明,随着球磨的进行,铝颗粒首先被压扁成片状,然后断裂/再焊接成等轴颗粒。在球磨过程中,晶粒尺寸减小,晶格应变增大,GNSs的加入也使晶粒尺寸减小,晶格应变增大。加入1.0 vol. % GNSs后,复合材料的硬度提高了115.1%。硬GNSs引起的局部应力加速了铣削过程。x射线衍射图表明,(111)与(200)的强度比可以反映颗粒混合物的择优取向,I(111)/I(200)的演化与SEM观察结果吻合较好。硬度的提高主要是由于组织的细化和Orowan强化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microstructure and mechanical properties of aluminium-graphene composite powders produced by mechanical milling

Microstructure and mechanical properties of aluminium-graphene composite powders produced by mechanical milling

Graphene has been reported to be a promising nanofiller in fabricating advanced metal matrix composites.

Graphene nanosheets (GNSs) have been incorporated into an aluminium matrix composite using mechanical milling and hot pressing in the current study.

The SEM observation shows that aluminium particles are firstly flattened into flakes, and then fractured/ rewelded into equiaxed particles as the ball milling progresses. The crystalline size is decreased and the lattice strain is increased during the ball milling, which are also intensified by the added GNSs. The hardness of the composite is increased by 115.1% with the incorporation of 1.0 vol. % GNSs.

The local stress induced by the hard GNSs accelerates the milling process. The X-Ray diffraction patterns show that the intensity ratio of (111) to (200) can reflect the preferred orientation of the particle mixture, and the evolution of I(111)/I(200) agrees well with the observed results using SEM. The increased hardness is mainly attributed to the refined microstructure and Orowan strengthening.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信