脑电图记录中的伪影去除方法综述

Mariyadasu Mathe, Padmaja Mididoddi, B. T. Krishna
{"title":"脑电图记录中的伪影去除方法综述","authors":"Mariyadasu Mathe, Padmaja Mididoddi, B. T. Krishna","doi":"10.46604/peti.2021.7653","DOIUrl":null,"url":null,"abstract":"To obtain the correct analysis of electroencephalogram (EEG) signals, non-physiological and physiological artifacts should be removed from EEG signals. This study aims to give an overview on the existing methodology for removing physiological artifacts, e.g., ocular, cardiac, and muscle artifacts. The datasets, simulation platforms, and performance measures of artifact removal methods in previous related research are summarized. The advantages and disadvantages of each technique are discussed, including regression method, filtering method, blind source separation (BSS), wavelet transform (WT), empirical mode decomposition (EMD), singular spectrum analysis (SSA), and independent vector analysis (IVA). Also, the applications of hybrid approaches are presented, including discrete wavelet transform - adaptive filtering method (DWT-AFM), DWT-BSS, EMD-BSS, singular spectrum analysis - adaptive noise canceler (SSA-ANC), SSA-BSS, and EMD-IVA. Finally, a comparative analysis for these existing methods is provided based on their performance and merits. The result shows that hybrid methods can remove the artifacts more effectively than individual methods.","PeriodicalId":33402,"journal":{"name":"Proceedings of Engineering and Technology Innovation","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Artifact Removal Methods in EEG Recordings: A Review\",\"authors\":\"Mariyadasu Mathe, Padmaja Mididoddi, B. T. Krishna\",\"doi\":\"10.46604/peti.2021.7653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To obtain the correct analysis of electroencephalogram (EEG) signals, non-physiological and physiological artifacts should be removed from EEG signals. This study aims to give an overview on the existing methodology for removing physiological artifacts, e.g., ocular, cardiac, and muscle artifacts. The datasets, simulation platforms, and performance measures of artifact removal methods in previous related research are summarized. The advantages and disadvantages of each technique are discussed, including regression method, filtering method, blind source separation (BSS), wavelet transform (WT), empirical mode decomposition (EMD), singular spectrum analysis (SSA), and independent vector analysis (IVA). Also, the applications of hybrid approaches are presented, including discrete wavelet transform - adaptive filtering method (DWT-AFM), DWT-BSS, EMD-BSS, singular spectrum analysis - adaptive noise canceler (SSA-ANC), SSA-BSS, and EMD-IVA. Finally, a comparative analysis for these existing methods is provided based on their performance and merits. The result shows that hybrid methods can remove the artifacts more effectively than individual methods.\",\"PeriodicalId\":33402,\"journal\":{\"name\":\"Proceedings of Engineering and Technology Innovation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/peti.2021.7653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/peti.2021.7653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了获得对脑电图信号的正确分析,应该从脑电图信号中去除非生理和生理伪影。本研究旨在概述现有的去除生理伪影的方法,如眼部、心脏和肌肉伪影。总结了以往相关研究中伪影去除方法的数据集、仿真平台和性能指标。讨论了每种技术的优缺点,包括回归方法、滤波方法、盲源分离(BSS)、小波变换(WT)、经验模式分解(EMD)、奇异谱分析(SSA)和独立向量分析(IVA)。此外,还介绍了混合方法的应用,包括离散小波变换-自适应滤波方法(DWT-AFM)、DWT-BSS、EMD-BSS、奇异谱分析-自适应噪声消除器(SSA-ANC)、SSA-BSS和EMD-IVA。最后,根据这些现有方法的性能和优点,对其进行了比较分析。结果表明,混合方法可以比单独方法更有效地去除伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artifact Removal Methods in EEG Recordings: A Review
To obtain the correct analysis of electroencephalogram (EEG) signals, non-physiological and physiological artifacts should be removed from EEG signals. This study aims to give an overview on the existing methodology for removing physiological artifacts, e.g., ocular, cardiac, and muscle artifacts. The datasets, simulation platforms, and performance measures of artifact removal methods in previous related research are summarized. The advantages and disadvantages of each technique are discussed, including regression method, filtering method, blind source separation (BSS), wavelet transform (WT), empirical mode decomposition (EMD), singular spectrum analysis (SSA), and independent vector analysis (IVA). Also, the applications of hybrid approaches are presented, including discrete wavelet transform - adaptive filtering method (DWT-AFM), DWT-BSS, EMD-BSS, singular spectrum analysis - adaptive noise canceler (SSA-ANC), SSA-BSS, and EMD-IVA. Finally, a comparative analysis for these existing methods is provided based on their performance and merits. The result shows that hybrid methods can remove the artifacts more effectively than individual methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
12
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信