I. Malbakhova, A. Bagishev, A. Vorobyev, T. Borisenko, O. Logutenko, E. Lapushkina, A. Titkov
{"title":"3D喷墨打印和激光混合处理制备阳极支撑固体氧化物燃料电池(SOFC)半电池","authors":"I. Malbakhova, A. Bagishev, A. Vorobyev, T. Borisenko, O. Logutenko, E. Lapushkina, A. Titkov","doi":"10.3390/ceramics6030085","DOIUrl":null,"url":null,"abstract":"A NiO-10YSZ/10YSZ half-cell for anode-supported solid oxide fuel cells (SOFCs) was fabricated using 3D inkjet printing and layer-by-layer laser treatment of printing compositions followed by thermal sintering by a co-firing method. The optimal granulometric composition and rheological characteristics of the printing compositions to fabricate the NiO-10YSZ (60:40 wt.%) anode support, NiO-10YSZ (40:60 wt.%) anode functional layer (AFL), and 10YSZ electrolyte were determined. Effects of the pore former and laser post-treatment on the morphology of the as-prepared anodes for the manufacture of SOFC anode supports were studied, and the optimum laser exposure for hybrid 3D printing was determined. A mechanism of influence of the exposure of laser post-treatment on the morphology of the NiO-10YSZ anode supports has been proposed. The mass content of 10YSZ and the number of layers were shown to affect the surface microstructure and the thickness of the thin-film electrolytes deposited on the surface of the anode supports. The hybrid inkjet 3D printing offers great opportunities as it allows a one-pot procedure to fabricate a NiO-10YSZ/10YSZ SOFC half-cell for SOFC anode supports.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Anode-Supported Solid Oxide Fuel Cell (SOFC) Half-Cell Fabricated by Hybrid 3D Inkjet Printing and Laser Treatment\",\"authors\":\"I. Malbakhova, A. Bagishev, A. Vorobyev, T. Borisenko, O. Logutenko, E. Lapushkina, A. Titkov\",\"doi\":\"10.3390/ceramics6030085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A NiO-10YSZ/10YSZ half-cell for anode-supported solid oxide fuel cells (SOFCs) was fabricated using 3D inkjet printing and layer-by-layer laser treatment of printing compositions followed by thermal sintering by a co-firing method. The optimal granulometric composition and rheological characteristics of the printing compositions to fabricate the NiO-10YSZ (60:40 wt.%) anode support, NiO-10YSZ (40:60 wt.%) anode functional layer (AFL), and 10YSZ electrolyte were determined. Effects of the pore former and laser post-treatment on the morphology of the as-prepared anodes for the manufacture of SOFC anode supports were studied, and the optimum laser exposure for hybrid 3D printing was determined. A mechanism of influence of the exposure of laser post-treatment on the morphology of the NiO-10YSZ anode supports has been proposed. The mass content of 10YSZ and the number of layers were shown to affect the surface microstructure and the thickness of the thin-film electrolytes deposited on the surface of the anode supports. The hybrid inkjet 3D printing offers great opportunities as it allows a one-pot procedure to fabricate a NiO-10YSZ/10YSZ SOFC half-cell for SOFC anode supports.\",\"PeriodicalId\":33263,\"journal\":{\"name\":\"Ceramics-Switzerland\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics-Switzerland\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ceramics6030085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics-Switzerland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ceramics6030085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
An Anode-Supported Solid Oxide Fuel Cell (SOFC) Half-Cell Fabricated by Hybrid 3D Inkjet Printing and Laser Treatment
A NiO-10YSZ/10YSZ half-cell for anode-supported solid oxide fuel cells (SOFCs) was fabricated using 3D inkjet printing and layer-by-layer laser treatment of printing compositions followed by thermal sintering by a co-firing method. The optimal granulometric composition and rheological characteristics of the printing compositions to fabricate the NiO-10YSZ (60:40 wt.%) anode support, NiO-10YSZ (40:60 wt.%) anode functional layer (AFL), and 10YSZ electrolyte were determined. Effects of the pore former and laser post-treatment on the morphology of the as-prepared anodes for the manufacture of SOFC anode supports were studied, and the optimum laser exposure for hybrid 3D printing was determined. A mechanism of influence of the exposure of laser post-treatment on the morphology of the NiO-10YSZ anode supports has been proposed. The mass content of 10YSZ and the number of layers were shown to affect the surface microstructure and the thickness of the thin-film electrolytes deposited on the surface of the anode supports. The hybrid inkjet 3D printing offers great opportunities as it allows a one-pot procedure to fabricate a NiO-10YSZ/10YSZ SOFC half-cell for SOFC anode supports.