Yanxin Bian, Zhonghua Zhang, J. Su, Changming Mao, Guicun Li
{"title":"增强锂存储性能的卡其色氧化铌纳米链","authors":"Yanxin Bian, Zhonghua Zhang, J. Su, Changming Mao, Guicun Li","doi":"10.1504/IJNM.2019.10018331","DOIUrl":null,"url":null,"abstract":"Khaki-coloured niobium oxides (H-Nb2O5) nanochains were synthesised via a facile low temperature solution-based method combined with hydrogenation treatment process. The nano-sized chain-like architectures facilitate the fast lithium ion diffusions. Meanwhile, the hydrogen reduction process can effectively endow Nb2O5 with partial Nb4+ species and/or oxygen vacancies, resulting in a large enhancement of its intrinsic electronic conductivity. When evaluated for lithium storage capacity, the H-Nb2O5 showed twice the rate capability at 20 C compared to that of the pristine Nb2O5 nanochains due to the combination of the reduced path and Nb4+ doping induced high electronic conductivity. This facile hydrogenation method is promising for designing high performance carbon-free electrode materials for lithium ion batteries.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Khaki-coloured niobium oxide nanochains with enhanced lithium storage performances\",\"authors\":\"Yanxin Bian, Zhonghua Zhang, J. Su, Changming Mao, Guicun Li\",\"doi\":\"10.1504/IJNM.2019.10018331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Khaki-coloured niobium oxides (H-Nb2O5) nanochains were synthesised via a facile low temperature solution-based method combined with hydrogenation treatment process. The nano-sized chain-like architectures facilitate the fast lithium ion diffusions. Meanwhile, the hydrogen reduction process can effectively endow Nb2O5 with partial Nb4+ species and/or oxygen vacancies, resulting in a large enhancement of its intrinsic electronic conductivity. When evaluated for lithium storage capacity, the H-Nb2O5 showed twice the rate capability at 20 C compared to that of the pristine Nb2O5 nanochains due to the combination of the reduced path and Nb4+ doping induced high electronic conductivity. This facile hydrogenation method is promising for designing high performance carbon-free electrode materials for lithium ion batteries.\",\"PeriodicalId\":14170,\"journal\":{\"name\":\"International Journal of Nanomanufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNM.2019.10018331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2019.10018331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Khaki-coloured niobium oxide nanochains with enhanced lithium storage performances
Khaki-coloured niobium oxides (H-Nb2O5) nanochains were synthesised via a facile low temperature solution-based method combined with hydrogenation treatment process. The nano-sized chain-like architectures facilitate the fast lithium ion diffusions. Meanwhile, the hydrogen reduction process can effectively endow Nb2O5 with partial Nb4+ species and/or oxygen vacancies, resulting in a large enhancement of its intrinsic electronic conductivity. When evaluated for lithium storage capacity, the H-Nb2O5 showed twice the rate capability at 20 C compared to that of the pristine Nb2O5 nanochains due to the combination of the reduced path and Nb4+ doping induced high electronic conductivity. This facile hydrogenation method is promising for designing high performance carbon-free electrode materials for lithium ion batteries.