关于Black-Scholes模型下美式期权价值的数值研究

Q3 Mathematics
R. Malek
{"title":"关于Black-Scholes模型下美式期权价值的数值研究","authors":"R. Malek","doi":"10.2478/mjpaa-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract In the history of option pricing, Black-Scholes model is one of the most significant models. In this paper, we present a new numerical strategy for valuing American option pricing problems governed by Black-Scholes model (BSM). Numerical computations are carried out to show the efficiency and robustness of the proposed method. We compare our numerical solution with the ones based on Finite Element Method (FEM) and the Enriched Finite Element Method (PUFEM). Our result shows the efficiency of the proposed strategy. In addition, that approach can be used to treat nonlinear evolutionary problems.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"9 1","pages":"75 - 85"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About the valuation of American option under Black-Scholes model : a numerical study\",\"authors\":\"R. Malek\",\"doi\":\"10.2478/mjpaa-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the history of option pricing, Black-Scholes model is one of the most significant models. In this paper, we present a new numerical strategy for valuing American option pricing problems governed by Black-Scholes model (BSM). Numerical computations are carried out to show the efficiency and robustness of the proposed method. We compare our numerical solution with the ones based on Finite Element Method (FEM) and the Enriched Finite Element Method (PUFEM). Our result shows the efficiency of the proposed strategy. In addition, that approach can be used to treat nonlinear evolutionary problems.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"9 1\",\"pages\":\"75 - 85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2023-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2023-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要在期权定价史上,Black-Scholes模型是最重要的模型之一。在本文中,我们提出了一种新的数值策略来评估由Black-Scholes模型(BSM)控制的美式期权定价问题。数值计算表明了该方法的有效性和鲁棒性。我们将我们的数值解与基于有限元法(FEM)和丰富有限元法的数值解进行了比较。我们的结果表明了所提出的策略的有效性。此外,该方法可用于处理非线性进化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About the valuation of American option under Black-Scholes model : a numerical study
Abstract In the history of option pricing, Black-Scholes model is one of the most significant models. In this paper, we present a new numerical strategy for valuing American option pricing problems governed by Black-Scholes model (BSM). Numerical computations are carried out to show the efficiency and robustness of the proposed method. We compare our numerical solution with the ones based on Finite Element Method (FEM) and the Enriched Finite Element Method (PUFEM). Our result shows the efficiency of the proposed strategy. In addition, that approach can be used to treat nonlinear evolutionary problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信