勘误:测量热电系数时测量的是什么?

IF 1.3 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Kamran Behnia
{"title":"勘误:测量热电系数时测量的是什么?","authors":"Kamran Behnia","doi":"10.5802/crphys.100","DOIUrl":null,"url":null,"abstract":"A thermal gradient generates an electric field in any solid hosting mobile electrons. In presence of a finite magnetic field (or Berry curvature) this electric field has a transverse component. These are known as Seebeck and Nernst coefficients. As Callen argued, back in 1948, the Seebeck effect quantifies the entropy carried by a flow of charged particles in absence of thermal gradient. Similarly, the Nernst conductivity, αx y , quantifies the entropy carried by a flow of magnetic flux in absence of thermal gradient. The present paper summarizes a picture in which the rough amplitude of the thermoelectric response is given by fundamental units and material-dependent length scales. Therefore, knowledge of material-dependent length scales allows predicting the amplitude of the signal measured by experiments. Specifically, the Nernst conductivity scales with the square of the mean-free-path in metals. Its anomalous component in magnets scales with the square of the fictitious magnetic length. Ephemeral Cooper pairs in the normal state of a superconductor generate a signal, which scales with the square of the superconducting coherence length and smoothly evolves to the signal produced by mobile vortices below the critical temperature. This article is a draft (not yet accepted!)","PeriodicalId":50650,"journal":{"name":"Comptes Rendus Physique","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrigendum: What is measured when measuring a thermoelectric coefficient?\",\"authors\":\"Kamran Behnia\",\"doi\":\"10.5802/crphys.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A thermal gradient generates an electric field in any solid hosting mobile electrons. In presence of a finite magnetic field (or Berry curvature) this electric field has a transverse component. These are known as Seebeck and Nernst coefficients. As Callen argued, back in 1948, the Seebeck effect quantifies the entropy carried by a flow of charged particles in absence of thermal gradient. Similarly, the Nernst conductivity, αx y , quantifies the entropy carried by a flow of magnetic flux in absence of thermal gradient. The present paper summarizes a picture in which the rough amplitude of the thermoelectric response is given by fundamental units and material-dependent length scales. Therefore, knowledge of material-dependent length scales allows predicting the amplitude of the signal measured by experiments. Specifically, the Nernst conductivity scales with the square of the mean-free-path in metals. Its anomalous component in magnets scales with the square of the fictitious magnetic length. Ephemeral Cooper pairs in the normal state of a superconductor generate a signal, which scales with the square of the superconducting coherence length and smoothly evolves to the signal produced by mobile vortices below the critical temperature. This article is a draft (not yet accepted!)\",\"PeriodicalId\":50650,\"journal\":{\"name\":\"Comptes Rendus Physique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Physique\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5802/crphys.100\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Physique","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5802/crphys.100","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

热梯度在任何承载移动电子的固体中产生电场。在有限磁场(或贝瑞曲率)存在的情况下,这个电场有一个横向分量。这就是塞贝克系数和能斯特系数。正如卡伦在1948年所说,塞贝克效应量化了带电粒子流在没有热梯度的情况下所携带的熵。类似地,能量电导率αx y量化了没有热梯度的磁通量流所携带的熵。本文总结了一幅图,其中热电响应的粗略振幅由基本单位和材料相关的长度尺度给出。因此,对物质依赖的长度尺度的了解可以预测实验测量的信号的振幅。具体来说,能司特电导率与金属中平均自由程的平方成正比。它在磁体中的异常分量与虚拟磁长的平方成比例。超导体正常状态下的瞬时库珀对产生的信号与超导相干长度的平方成正比,并平滑地演化为低于临界温度的移动涡旋产生的信号。本文是一篇草稿(尚未被接受!)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corrigendum: What is measured when measuring a thermoelectric coefficient?
A thermal gradient generates an electric field in any solid hosting mobile electrons. In presence of a finite magnetic field (or Berry curvature) this electric field has a transverse component. These are known as Seebeck and Nernst coefficients. As Callen argued, back in 1948, the Seebeck effect quantifies the entropy carried by a flow of charged particles in absence of thermal gradient. Similarly, the Nernst conductivity, αx y , quantifies the entropy carried by a flow of magnetic flux in absence of thermal gradient. The present paper summarizes a picture in which the rough amplitude of the thermoelectric response is given by fundamental units and material-dependent length scales. Therefore, knowledge of material-dependent length scales allows predicting the amplitude of the signal measured by experiments. Specifically, the Nernst conductivity scales with the square of the mean-free-path in metals. Its anomalous component in magnets scales with the square of the fictitious magnetic length. Ephemeral Cooper pairs in the normal state of a superconductor generate a signal, which scales with the square of the superconducting coherence length and smoothly evolves to the signal produced by mobile vortices below the critical temperature. This article is a draft (not yet accepted!)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comptes Rendus Physique
Comptes Rendus Physique 物理-天文与天体物理
CiteScore
2.80
自引率
0.00%
发文量
13
审稿时长
17.2 weeks
期刊介绍: The Comptes Rendus - Physique are an open acess and peer-reviewed electronic scientific journal publishing original research article. It is one of seven journals published by the Académie des sciences. Its objective is to enable researchers to quickly share their work with the international scientific community. The Comptes Rendus - Physique also publish journal articles, thematic issues and articles on the history of the Académie des sciences and its current scientific activity. From 2020 onwards, the journal''s policy is based on a diamond open access model: no fees are charged to authors to publish or to readers to access articles. Thus, articles are accessible immediately, free of charge and permanently after publication. The Comptes Rendus - Physique (8 issues per year) cover all fields of physics and astrophysics and propose dossiers. Thanks to this formula, readers of physics and astrophysics will find, in each issue, the presentation of a subject in particularly rapid development. The authors are chosen from among the most active researchers in the field and each file is coordinated by a guest editor, ensuring that the most recent and significant results are taken into account. In order to preserve the historical purpose of the Comptes Rendus, these issues also leave room for the usual notes and clarifications. The articles are written mainly in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信