二维高斯Pell序列

Q4 Mathematics
S. Uygun
{"title":"二维高斯Pell序列","authors":"S. Uygun","doi":"10.24193/mathcluj.2023.1.15","DOIUrl":null,"url":null,"abstract":"\"In this study firstly we carried out the Pell sequence to the complex plane, then we defined the sequence into two dimensions. We called this generalized sequence two dimensional gaussian Pell sequence. We investigated the Binet formula, generating function, sum formula, explicit closed formula, and some relations between Pell sequences. Also, we get a matrix equality for obtaining elements of the two-dimensional gaussian Pell sequence. \"","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two dimensional Gaussian Pell sequences\",\"authors\":\"S. Uygun\",\"doi\":\"10.24193/mathcluj.2023.1.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In this study firstly we carried out the Pell sequence to the complex plane, then we defined the sequence into two dimensions. We called this generalized sequence two dimensional gaussian Pell sequence. We investigated the Binet formula, generating function, sum formula, explicit closed formula, and some relations between Pell sequences. Also, we get a matrix equality for obtaining elements of the two-dimensional gaussian Pell sequence. \\\"\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/mathcluj.2023.1.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/mathcluj.2023.1.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

“在本研究中,我们首先对复平面进行了Pell序列,然后将序列定义为二维。我们称这个广义序列为二维高斯佩尔序列。研究了Binet公式、生成函数、和公式、显式封闭公式以及Pell序列之间的一些关系。此外,我们还得到了二维高斯Pell序列元素的矩阵等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two dimensional Gaussian Pell sequences
"In this study firstly we carried out the Pell sequence to the complex plane, then we defined the sequence into two dimensions. We called this generalized sequence two dimensional gaussian Pell sequence. We investigated the Binet formula, generating function, sum formula, explicit closed formula, and some relations between Pell sequences. Also, we get a matrix equality for obtaining elements of the two-dimensional gaussian Pell sequence. "
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信