{"title":"光前夸克模型中半光子和稀有D π K衰变的电流分量独立跃迁形式因子","authors":"H. Choi","doi":"10.1155/2021/4277321","DOIUrl":null,"url":null,"abstract":"<jats:p>We investigate the exclusive semileptonic and rare <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>D</mi>\n <mo>⟶</mo>\n <mi>π</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>K</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> decays within the standard model together with the light-front quark model (LFQM) constrained by the variational principle for the QCD-motivated effective Hamiltonian. The form factors are obtained in the <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msup>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n <mo>=</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula> frame and then analytically continue to the physical timelike region. Together with our recent analysis of the current-component independent form factors <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mo>±</mo>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <msup>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> for the semileptonic decays, we present the current-component independent tensor form factor <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <msup>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> for the rare decays to make the complete set of hadronic matrix elements regulating the semileptonic and rare <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>D</mi>\n <mo>⟶</mo>\n <mi>π</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>K</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> decays in our LFQM. The tensor form factor <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <msup>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> are obtained from two independent sets <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <msubsup>\n <mrow>\n <mi>J</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n <mrow>\n <mo>⊥</mo>\n </mrow>\n </mrow>\n </msubsup>\n <mrow>\n <mo>,</mo>\n </mrow>\n <msubsup>\n <mrow>\n <mi>J</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n <mrow>\n <mo>−</mo>\n </mrow>\n </mrow>\n </msubsup>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> of the tensor current <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <msubsup>\n <mrow>\n <mi>J</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mi>u</mi>\n <mi>v</mi>\n </mrow>\n </msubsup>\n </math>\n </jats:inline-formula> . As in our recent analysis of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mo>−</mo>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <msup>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, we show that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <msup>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> obtained from the two different sets of the current components gives the identical result in the valence region of the <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <msup>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n <mo>=</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula> frame without involving the explicit zero modes and the instantaneous contributions. The implications of the zero modes and the instantaneou","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Current-Component Independent Transition Form Factors for Semileptonic and Rare \\n D\\n ⟶\\n π\\n \\n \\n K\\n \\n \\n Decays in the Light-Front Quark Model\",\"authors\":\"H. Choi\",\"doi\":\"10.1155/2021/4277321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>We investigate the exclusive semileptonic and rare <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>D</mi>\\n <mo>⟶</mo>\\n <mi>π</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>K</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> decays within the standard model together with the light-front quark model (LFQM) constrained by the variational principle for the QCD-motivated effective Hamiltonian. The form factors are obtained in the <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <msup>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n <mo>=</mo>\\n <mn>0</mn>\\n </math>\\n </jats:inline-formula> frame and then analytically continue to the physical timelike region. Together with our recent analysis of the current-component independent form factors <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <msub>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <mrow>\\n <mo>±</mo>\\n </mrow>\\n </msub>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> for the semileptonic decays, we present the current-component independent tensor form factor <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <msub>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </msub>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> for the rare decays to make the complete set of hadronic matrix elements regulating the semileptonic and rare <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi>D</mi>\\n <mo>⟶</mo>\\n <mi>π</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>K</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> decays in our LFQM. The tensor form factor <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <msub>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </msub>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> are obtained from two independent sets <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <msubsup>\\n <mrow>\\n <mi>J</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n <mrow>\\n <mo>⊥</mo>\\n </mrow>\\n </mrow>\\n </msubsup>\\n <mrow>\\n <mo>,</mo>\\n </mrow>\\n <msubsup>\\n <mrow>\\n <mi>J</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n <mrow>\\n <mo>−</mo>\\n </mrow>\\n </mrow>\\n </msubsup>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> of the tensor current <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <msubsup>\\n <mrow>\\n <mi>J</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mi>u</mi>\\n <mi>v</mi>\\n </mrow>\\n </msubsup>\\n </math>\\n </jats:inline-formula> . As in our recent analysis of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <msub>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n </mrow>\\n </msub>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, we show that <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <msub>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </msub>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> obtained from the two different sets of the current components gives the identical result in the valence region of the <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M12\\\">\\n <msup>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n <mo>=</mo>\\n <mn>0</mn>\\n </math>\\n </jats:inline-formula> frame without involving the explicit zero modes and the instantaneous contributions. The implications of the zero modes and the instantaneou\",\"PeriodicalId\":7498,\"journal\":{\"name\":\"Advances in High Energy Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/4277321\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/4277321","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 5
摘要
我们研究了标准模型内的排他半子和稀有的D π K衰变,以及受变分原理约束的光前夸克模型(LFQM)。在q + = 0帧中获得形状因子,然后解析继续到物理类时区域。加上我们最近对电流分量无关形状因子f±q的分析2为半光子衰变;我们提出了电流分量无关张量形式因子ftq2为稀有衰变,使强子矩阵元素的完备集调节半光子和稀有D π K在LFQM中衰减。 张量形式因子ftq2是从两个独立的集合jt中得到的⊥,J t +−张量电流J T u v。就像我们最近对f−q的分析一样2 ,我们证明了ftq由两组不同的电流分量得到的2在q +的价区给出了相同的结果= 0框架,不涉及显式零模态和瞬时贡献。零模和瞬时模的含义
Current-Component Independent Transition Form Factors for Semileptonic and Rare
D
⟶
π
K
Decays in the Light-Front Quark Model
We investigate the exclusive semileptonic and rare decays within the standard model together with the light-front quark model (LFQM) constrained by the variational principle for the QCD-motivated effective Hamiltonian. The form factors are obtained in the frame and then analytically continue to the physical timelike region. Together with our recent analysis of the current-component independent form factors for the semileptonic decays, we present the current-component independent tensor form factor for the rare decays to make the complete set of hadronic matrix elements regulating the semileptonic and rare decays in our LFQM. The tensor form factor are obtained from two independent sets of the tensor current . As in our recent analysis of , we show that obtained from the two different sets of the current components gives the identical result in the valence region of the frame without involving the explicit zero modes and the instantaneous contributions. The implications of the zero modes and the instantaneou
期刊介绍:
Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.