{"title":"一类奇异源平面指数非线性椭圆型方程的气泡解","authors":"Jingyi Dong, Jiamei Hu, Yibin Zhang","doi":"10.57262/ade027-0304-147","DOIUrl":null,"url":null,"abstract":"Let $\\Omega$ be a bounded domain in $\\mathbb{R}^2$ with smooth boundary, we study the following elliptic Dirichlet problem \\begin{equation*} \\aligned \\left\\{\\aligned &-\\Delta\\upsilon= e^{\\upsilon}-s\\phi_1-4\\pi\\alpha\\delta_p-h(x)\\,\\,\\,\\, \\,\\textrm{in}\\,\\,\\,\\,\\,\\Omega,\\\\[2mm] &\\upsilon=0 \\quad\\quad\\quad\\quad\\quad\\quad \\quad\\qquad\\qquad\\quad\\quad\\, \\textrm{on}\\,\\ \\,\\partial\\Omega, \\endaligned\\right. \\endaligned \\end{equation*} where $s>0$ is a large parameter, $h\\in C^{0,\\gamma}(\\overline{\\Omega})$, $p\\in\\Omega$, $\\alpha\\in(-1,+\\infty)\\setminus\\mathbb{N}$, $\\delta_p$ denotes the Dirac measure supported at point $p$ and $\\phi_1$ is a positive first eigenfunction of the problem $-\\Delta\\phi=\\lambda\\phi$ under Dirichlet boundary condition in $\\Omega$. If $p$ is a strict local maximum point of $\\phi_1$, we show that such a problem has a family of solutions $\\upsilon_s$ with arbitrary $m$ bubbles accumulating to $p$, and the quantity $\\int_{\\Omega}e^{\\upsilon_s}\\rightarrow8\\pi(m+1+\\alpha)\\phi_1(p)$ as $s\\rightarrow+\\infty$.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bubbling solutions for a planar exponential nonlinear elliptic equation with a singular source\",\"authors\":\"Jingyi Dong, Jiamei Hu, Yibin Zhang\",\"doi\":\"10.57262/ade027-0304-147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Omega$ be a bounded domain in $\\\\mathbb{R}^2$ with smooth boundary, we study the following elliptic Dirichlet problem \\\\begin{equation*} \\\\aligned \\\\left\\\\{\\\\aligned &-\\\\Delta\\\\upsilon= e^{\\\\upsilon}-s\\\\phi_1-4\\\\pi\\\\alpha\\\\delta_p-h(x)\\\\,\\\\,\\\\,\\\\, \\\\,\\\\textrm{in}\\\\,\\\\,\\\\,\\\\,\\\\,\\\\Omega,\\\\\\\\[2mm] &\\\\upsilon=0 \\\\quad\\\\quad\\\\quad\\\\quad\\\\quad\\\\quad \\\\quad\\\\qquad\\\\qquad\\\\quad\\\\quad\\\\, \\\\textrm{on}\\\\,\\\\ \\\\,\\\\partial\\\\Omega, \\\\endaligned\\\\right. \\\\endaligned \\\\end{equation*} where $s>0$ is a large parameter, $h\\\\in C^{0,\\\\gamma}(\\\\overline{\\\\Omega})$, $p\\\\in\\\\Omega$, $\\\\alpha\\\\in(-1,+\\\\infty)\\\\setminus\\\\mathbb{N}$, $\\\\delta_p$ denotes the Dirac measure supported at point $p$ and $\\\\phi_1$ is a positive first eigenfunction of the problem $-\\\\Delta\\\\phi=\\\\lambda\\\\phi$ under Dirichlet boundary condition in $\\\\Omega$. If $p$ is a strict local maximum point of $\\\\phi_1$, we show that such a problem has a family of solutions $\\\\upsilon_s$ with arbitrary $m$ bubbles accumulating to $p$, and the quantity $\\\\int_{\\\\Omega}e^{\\\\upsilon_s}\\\\rightarrow8\\\\pi(m+1+\\\\alpha)\\\\phi_1(p)$ as $s\\\\rightarrow+\\\\infty$.\",\"PeriodicalId\":53312,\"journal\":{\"name\":\"Advances in Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade027-0304-147\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade027-0304-147","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bubbling solutions for a planar exponential nonlinear elliptic equation with a singular source
Let $\Omega$ be a bounded domain in $\mathbb{R}^2$ with smooth boundary, we study the following elliptic Dirichlet problem \begin{equation*} \aligned \left\{\aligned &-\Delta\upsilon= e^{\upsilon}-s\phi_1-4\pi\alpha\delta_p-h(x)\,\,\,\, \,\textrm{in}\,\,\,\,\,\Omega,\\[2mm] &\upsilon=0 \quad\quad\quad\quad\quad\quad \quad\qquad\qquad\quad\quad\, \textrm{on}\,\ \,\partial\Omega, \endaligned\right. \endaligned \end{equation*} where $s>0$ is a large parameter, $h\in C^{0,\gamma}(\overline{\Omega})$, $p\in\Omega$, $\alpha\in(-1,+\infty)\setminus\mathbb{N}$, $\delta_p$ denotes the Dirac measure supported at point $p$ and $\phi_1$ is a positive first eigenfunction of the problem $-\Delta\phi=\lambda\phi$ under Dirichlet boundary condition in $\Omega$. If $p$ is a strict local maximum point of $\phi_1$, we show that such a problem has a family of solutions $\upsilon_s$ with arbitrary $m$ bubbles accumulating to $p$, and the quantity $\int_{\Omega}e^{\upsilon_s}\rightarrow8\pi(m+1+\alpha)\phi_1(p)$ as $s\rightarrow+\infty$.
期刊介绍:
Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.