锰铁烧结矿中Fe3O4-Mn3O4系列尖晶石的显微硬度-成分关系及其与烧结矿强度的关系

IF 0.9 Q3 MINING & MINERAL PROCESSING
M. Peterson, S. Hapugoda, J. Manuel
{"title":"锰铁烧结矿中Fe3O4-Mn3O4系列尖晶石的显微硬度-成分关系及其与烧结矿强度的关系","authors":"M. Peterson, S. Hapugoda, J. Manuel","doi":"10.1080/25726641.2022.2130522","DOIUrl":null,"url":null,"abstract":"ABSTRACT Fe-Mn spinels are common bonding phases in ferromanganese sinter and play an important role in determining sinter strength. This study analysed spinel phases from ferromanganese sinter to determine the range of compositions present and examine the relationship between phase composition and microhardness. Spinels with α-vredenburgite and jacobsite compositions had notably increased mean Al content compared to that of end-member Fe- or Mn-spinels. There was a strong negative correlation between the Fe+Al content and the Mn/Fe ratio of sinter jacobsite and of α-vredenburgite, indicating the likely substitution of Al3+ for Mn3+ in the vredenburgite structure. Mixed Fe-Mn spinels had higher Vickers and Knoop microhardness and fracture toughness than end-member Fe- or Mn-spinels. It is likely that the presence of Al in the octahedral site in the α-vredenburgite structure is related to the increased microhardness and, therefore, should have a positive effect on sinter strength if vredenburgite is present in sufficient quantities.","PeriodicalId":43710,"journal":{"name":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","volume":"132 1","pages":"28 - 39"},"PeriodicalIF":0.9000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microhardness-compositional relationship of Fe3O4-Mn3O4 series spinels from ferromanganese sinter and its relationship to sinter strength\",\"authors\":\"M. Peterson, S. Hapugoda, J. Manuel\",\"doi\":\"10.1080/25726641.2022.2130522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Fe-Mn spinels are common bonding phases in ferromanganese sinter and play an important role in determining sinter strength. This study analysed spinel phases from ferromanganese sinter to determine the range of compositions present and examine the relationship between phase composition and microhardness. Spinels with α-vredenburgite and jacobsite compositions had notably increased mean Al content compared to that of end-member Fe- or Mn-spinels. There was a strong negative correlation between the Fe+Al content and the Mn/Fe ratio of sinter jacobsite and of α-vredenburgite, indicating the likely substitution of Al3+ for Mn3+ in the vredenburgite structure. Mixed Fe-Mn spinels had higher Vickers and Knoop microhardness and fracture toughness than end-member Fe- or Mn-spinels. It is likely that the presence of Al in the octahedral site in the α-vredenburgite structure is related to the increased microhardness and, therefore, should have a positive effect on sinter strength if vredenburgite is present in sufficient quantities.\",\"PeriodicalId\":43710,\"journal\":{\"name\":\"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy\",\"volume\":\"132 1\",\"pages\":\"28 - 39\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25726641.2022.2130522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726641.2022.2130522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

摘要

铁锰尖晶石是锰铁烧结矿中常见的结合相,在决定烧结矿强度方面起着重要作用。本研究分析了锰铁烧结矿中的尖晶石相,以确定存在的成分范围,并研究了相组成与显微硬度之间的关系。与端元Fe或Mn尖晶石相比,具有α-辉橄榄岩和雅各布岩成分的尖晶石的平均Al含量显著增加。Fe+Al含量与烧结Jacobite和α-辉橄榄岩的Mn/Fe比呈强负相关,表明在辉橄榄岩结构中Al3+可能取代Mn3+。混合铁锰尖晶石比端元铁锰尖晶石具有更高的维氏和努氏显微硬度以及断裂韧性。铝在α-辉橄榄岩结构中八面体位置的存在可能与显微硬度的增加有关,因此,如果辉橄榄岩存在足够的量,则应对烧结强度产生积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microhardness-compositional relationship of Fe3O4-Mn3O4 series spinels from ferromanganese sinter and its relationship to sinter strength
ABSTRACT Fe-Mn spinels are common bonding phases in ferromanganese sinter and play an important role in determining sinter strength. This study analysed spinel phases from ferromanganese sinter to determine the range of compositions present and examine the relationship between phase composition and microhardness. Spinels with α-vredenburgite and jacobsite compositions had notably increased mean Al content compared to that of end-member Fe- or Mn-spinels. There was a strong negative correlation between the Fe+Al content and the Mn/Fe ratio of sinter jacobsite and of α-vredenburgite, indicating the likely substitution of Al3+ for Mn3+ in the vredenburgite structure. Mixed Fe-Mn spinels had higher Vickers and Knoop microhardness and fracture toughness than end-member Fe- or Mn-spinels. It is likely that the presence of Al in the octahedral site in the α-vredenburgite structure is related to the increased microhardness and, therefore, should have a positive effect on sinter strength if vredenburgite is present in sufficient quantities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信