基于L10模型的道路交通噪声预测和基于模拟数据的多线性回归

Q3 Engineering
Domenico Rossi, A. Mascolo, C. Guarnaccia
{"title":"基于L10模型的道路交通噪声预测和基于模拟数据的多线性回归","authors":"Domenico Rossi, A. Mascolo, C. Guarnaccia","doi":"10.46300/9104.2023.17.8","DOIUrl":null,"url":null,"abstract":"Estimation of road traffic noise is fundamental for the health of people living in urban areas, and it is usually assessed based on field-measured data. Real data may not always be available, anyway, and for this reason, predictive models play an important role in the evaluation and controlling of the noise impact. In this contribution, the authors present a multilinear regressive model calibrated on simulated noise levels instead that on real measured ones, correlating percentile noise levels to independent traffic variables. The model efficiency is then evaluated on two field measurement datasets by analyzing data statistics and error metrics. Results show that the model provides good results in terms of mean error (less than 1 dBA on average) even if slight underestimations and overestimations are present. The presented model, then, can be used to assess the impact of road traffic noise anytime field measurements are not available, or even predict it when designing new road infrastructures.","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Road Traffic Noise Predictions by means of L10 Modelling with a Multilinear Regression Calibrated on Simulated Data\",\"authors\":\"Domenico Rossi, A. Mascolo, C. Guarnaccia\",\"doi\":\"10.46300/9104.2023.17.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of road traffic noise is fundamental for the health of people living in urban areas, and it is usually assessed based on field-measured data. Real data may not always be available, anyway, and for this reason, predictive models play an important role in the evaluation and controlling of the noise impact. In this contribution, the authors present a multilinear regressive model calibrated on simulated noise levels instead that on real measured ones, correlating percentile noise levels to independent traffic variables. The model efficiency is then evaluated on two field measurement datasets by analyzing data statistics and error metrics. Results show that the model provides good results in terms of mean error (less than 1 dBA on average) even if slight underestimations and overestimations are present. The presented model, then, can be used to assess the impact of road traffic noise anytime field measurements are not available, or even predict it when designing new road infrastructures.\",\"PeriodicalId\":39203,\"journal\":{\"name\":\"International Journal of Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/9104.2023.17.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9104.2023.17.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

道路交通噪声的估计对生活在城市地区的人的健康至关重要,通常是根据实地测量的数据进行评估的。无论如何,真实数据可能并不总是可用的,因此,预测模型在评估和控制噪声影响方面发挥着重要作用。在这篇文章中,作者提出了一个基于模拟噪声水平而不是实际测量噪声水平校准的多线性回归模型,将百分位噪声水平与独立的交通变量相关联。通过对数据统计和误差度量的分析,在两个现场测量数据集上评价了模型的有效性。结果表明,即使存在轻微的低估和高估,该模型在平均误差(平均小于1 dBA)方面也提供了良好的结果。因此,所提出的模型可以在没有现场测量的情况下用于评估道路交通噪声的影响,甚至可以在设计新的道路基础设施时进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Road Traffic Noise Predictions by means of L10 Modelling with a Multilinear Regression Calibrated on Simulated Data
Estimation of road traffic noise is fundamental for the health of people living in urban areas, and it is usually assessed based on field-measured data. Real data may not always be available, anyway, and for this reason, predictive models play an important role in the evaluation and controlling of the noise impact. In this contribution, the authors present a multilinear regressive model calibrated on simulated noise levels instead that on real measured ones, correlating percentile noise levels to independent traffic variables. The model efficiency is then evaluated on two field measurement datasets by analyzing data statistics and error metrics. Results show that the model provides good results in terms of mean error (less than 1 dBA on average) even if slight underestimations and overestimations are present. The presented model, then, can be used to assess the impact of road traffic noise anytime field measurements are not available, or even predict it when designing new road infrastructures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanics
International Journal of Mechanics Engineering-Computational Mechanics
CiteScore
1.60
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信