拉格朗日格拉斯曼方程的欧拉障碍

Q3 Mathematics
P. LeVan, Claudiu Raicu
{"title":"拉格朗日格拉斯曼方程的欧拉障碍","authors":"P. LeVan, Claudiu Raicu","doi":"10.5802/alco.211","DOIUrl":null,"url":null,"abstract":"We prove a case of a positivity conjecture of Mihalcea–Singh, concerned with the local Euler obstructions associated to the Schubert stratification of the Lagrangian Grassman- nian LG ( n, 2 n ). Combined with work of Aluffi–Mihalcea–Schürmann–Su, this further implies the positivity of the Mather classes for Schubert varieties in LG ( n, 2 n ), which Mihalcea–Singh had verified for the other cominuscule spaces of classical Lie type. Building on the work of Boe and Fu, we give a positive recursion for the local Euler obstructions, and use it to show that they provide a positive count of admissible labelings of certain trees, analogous to the ones describing Kazhdan–Lusztig polynomials. Unlike in the case of the Grassmannians in types A and D, for LG ( n, 2 n ) the Euler obstructions e y,w may vanish for certain pairs ( y,w ) with y (cid:54) w in the Bruhat order. Our combinatorial description allows us to classify all the pairs ( y,w ) for which e y,w = 0. Restricting to the big opposite cell in LG ( n, 2 n ), which is naturally identified with the space of n × n symmetric matrices, we recover the formulas for the local Euler obstructions associated with the matrix rank stratification.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Euler obstructions for the Lagrangian Grassmannian\",\"authors\":\"P. LeVan, Claudiu Raicu\",\"doi\":\"10.5802/alco.211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a case of a positivity conjecture of Mihalcea–Singh, concerned with the local Euler obstructions associated to the Schubert stratification of the Lagrangian Grassman- nian LG ( n, 2 n ). Combined with work of Aluffi–Mihalcea–Schürmann–Su, this further implies the positivity of the Mather classes for Schubert varieties in LG ( n, 2 n ), which Mihalcea–Singh had verified for the other cominuscule spaces of classical Lie type. Building on the work of Boe and Fu, we give a positive recursion for the local Euler obstructions, and use it to show that they provide a positive count of admissible labelings of certain trees, analogous to the ones describing Kazhdan–Lusztig polynomials. Unlike in the case of the Grassmannians in types A and D, for LG ( n, 2 n ) the Euler obstructions e y,w may vanish for certain pairs ( y,w ) with y (cid:54) w in the Bruhat order. Our combinatorial description allows us to classify all the pairs ( y,w ) for which e y,w = 0. Restricting to the big opposite cell in LG ( n, 2 n ), which is naturally identified with the space of n × n symmetric matrices, we recover the formulas for the local Euler obstructions associated with the matrix rank stratification.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了与Lagrangian Grassman- nian LG (n, 2n)的Schubert分层有关的局部欧拉障碍物的Mihalcea-Singh的一个正猜想。结合aluffi - mihalcea - sch rmann - su的工作,这进一步暗示了LG (n, 2n)中Schubert变体的Mather类的正性,Mihalcea-Singh已经在经典Lie型的其他共微空间中验证了这一正性。在Boe和Fu的工作的基础上,我们给出了局部欧拉障碍的正递推,并用它来证明它们提供了某些树的可容许标记的正计数,类似于描述Kazhdan-Lusztig多项式的标记。与A型和D型的格拉斯曼人不同,对于LG (n, 2n)欧拉障碍e y,w对于某些对(y,w)和y (cid:54) w在Bruhat数列中可能会消失。我们的组合描述允许我们对所有y,w = 0的对(y,w)进行分类。限制LG (n, 2n)中的大对胞,它自然地等同于n × n对称矩阵的空间,我们恢复了与矩阵秩分层相关的局部欧拉障碍的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euler obstructions for the Lagrangian Grassmannian
We prove a case of a positivity conjecture of Mihalcea–Singh, concerned with the local Euler obstructions associated to the Schubert stratification of the Lagrangian Grassman- nian LG ( n, 2 n ). Combined with work of Aluffi–Mihalcea–Schürmann–Su, this further implies the positivity of the Mather classes for Schubert varieties in LG ( n, 2 n ), which Mihalcea–Singh had verified for the other cominuscule spaces of classical Lie type. Building on the work of Boe and Fu, we give a positive recursion for the local Euler obstructions, and use it to show that they provide a positive count of admissible labelings of certain trees, analogous to the ones describing Kazhdan–Lusztig polynomials. Unlike in the case of the Grassmannians in types A and D, for LG ( n, 2 n ) the Euler obstructions e y,w may vanish for certain pairs ( y,w ) with y (cid:54) w in the Bruhat order. Our combinatorial description allows us to classify all the pairs ( y,w ) for which e y,w = 0. Restricting to the big opposite cell in LG ( n, 2 n ), which is naturally identified with the space of n × n symmetric matrices, we recover the formulas for the local Euler obstructions associated with the matrix rank stratification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信