增强相和固化后温度对压痕玻璃/环氧复合材料层合板粘接复合补片修复的影响

IF 2.9 4区 材料科学 Q2 ENGINEERING, CHEMICAL
Shravan Kumar Chinta, D. S, B. G., H. R, N. B, S. C, S. M
{"title":"增强相和固化后温度对压痕玻璃/环氧复合材料层合板粘接复合补片修复的影响","authors":"Shravan Kumar Chinta, D. S, B. G., H. R, N. B, S. C, S. M","doi":"10.1080/00218464.2023.2169145","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper focuses on the experimental investigation on the effect of different fiber reinforcement phases and post-cure temperature to improve the strength recovery of adhesively bonded patch repair in glass/epoxy composite laminates. The repair was performed on the site of damaged region in the laminates by using various configurations of patches such as chopped glass (CG), chopped glass/carbon (CGC), chopped glass/kevlar (CGK), ply-by-ply glass (PG), ply-by-ply glass/carbon (PGC), ply-by-ply glass/kevlar (PGK), stitched glass (SG), stitched glass/carbon (SGC), and stitched glass/kevlar (SGK). The result reveals that the SGK hybrid patch repaired laminates offered a strength recovery by 101.5% as compared with damaged laminates. Further, the SGK hybrid patch was subjected to post-cure temperatures of 50°C, 70°C, 90°C, and 110°C which were considered based on the glass transition temperature (Tg) of glass/epoxy laminates. The result shows that the SGK hybrid patch with a post-cured temperature of 50°C has equal strength with virgin laminates and the strength recovery was improved by 112.9% as compared with damaged laminates. This study concluded that the adhesively bonded hybrid patch repair with a post-cure temperature of 50°C can be used for various fiber-reinforced polymer (FRP) industries to repair laminated composites.","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":"99 1","pages":"2031 - 2051"},"PeriodicalIF":2.9000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of reinforcement phases and post-cure temperature on adhesively bonded hybrid patch repair in indented glass/epoxy composite laminates\",\"authors\":\"Shravan Kumar Chinta, D. S, B. G., H. R, N. B, S. C, S. M\",\"doi\":\"10.1080/00218464.2023.2169145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper focuses on the experimental investigation on the effect of different fiber reinforcement phases and post-cure temperature to improve the strength recovery of adhesively bonded patch repair in glass/epoxy composite laminates. The repair was performed on the site of damaged region in the laminates by using various configurations of patches such as chopped glass (CG), chopped glass/carbon (CGC), chopped glass/kevlar (CGK), ply-by-ply glass (PG), ply-by-ply glass/carbon (PGC), ply-by-ply glass/kevlar (PGK), stitched glass (SG), stitched glass/carbon (SGC), and stitched glass/kevlar (SGK). The result reveals that the SGK hybrid patch repaired laminates offered a strength recovery by 101.5% as compared with damaged laminates. Further, the SGK hybrid patch was subjected to post-cure temperatures of 50°C, 70°C, 90°C, and 110°C which were considered based on the glass transition temperature (Tg) of glass/epoxy laminates. The result shows that the SGK hybrid patch with a post-cured temperature of 50°C has equal strength with virgin laminates and the strength recovery was improved by 112.9% as compared with damaged laminates. This study concluded that the adhesively bonded hybrid patch repair with a post-cure temperature of 50°C can be used for various fiber-reinforced polymer (FRP) industries to repair laminated composites.\",\"PeriodicalId\":14778,\"journal\":{\"name\":\"Journal of Adhesion\",\"volume\":\"99 1\",\"pages\":\"2031 - 2051\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Adhesion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/00218464.2023.2169145\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Adhesion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00218464.2023.2169145","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文主要研究了不同纤维增强相和固化后温度对提高玻璃/环氧复合材料层合板粘接补丁修复强度恢复的影响。在层合板的损伤部位,采用不同结构的补片,如碎玻璃(CG)、碎玻璃/碳(CGC)、碎玻璃/凯夫拉(CGK)、层合玻璃(PG)、层合玻璃/碳(PGC)、层合玻璃/凯夫拉(PGK)、缝玻璃(SG)、缝玻璃/碳(SGC)和缝玻璃/凯夫拉(SGK)进行修复。结果表明,SGK杂化贴片修复层合板的强度恢复比损伤层合板高101.5%。此外,SGK杂化贴片的固化后温度分别为50°C、70°C、90°C和110°C,这是基于玻璃/环氧层合板的玻璃化转变温度(Tg)考虑的。结果表明:经50℃后固化后的SGK杂化贴片强度与未固化层合板相当,强度回复率较损伤层合板提高112.9%;本研究认为,固化后温度为50℃的粘接复合贴片修复可用于各种纤维增强聚合物(FRP)行业的层合复合材料修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of reinforcement phases and post-cure temperature on adhesively bonded hybrid patch repair in indented glass/epoxy composite laminates
ABSTRACT This paper focuses on the experimental investigation on the effect of different fiber reinforcement phases and post-cure temperature to improve the strength recovery of adhesively bonded patch repair in glass/epoxy composite laminates. The repair was performed on the site of damaged region in the laminates by using various configurations of patches such as chopped glass (CG), chopped glass/carbon (CGC), chopped glass/kevlar (CGK), ply-by-ply glass (PG), ply-by-ply glass/carbon (PGC), ply-by-ply glass/kevlar (PGK), stitched glass (SG), stitched glass/carbon (SGC), and stitched glass/kevlar (SGK). The result reveals that the SGK hybrid patch repaired laminates offered a strength recovery by 101.5% as compared with damaged laminates. Further, the SGK hybrid patch was subjected to post-cure temperatures of 50°C, 70°C, 90°C, and 110°C which were considered based on the glass transition temperature (Tg) of glass/epoxy laminates. The result shows that the SGK hybrid patch with a post-cured temperature of 50°C has equal strength with virgin laminates and the strength recovery was improved by 112.9% as compared with damaged laminates. This study concluded that the adhesively bonded hybrid patch repair with a post-cure temperature of 50°C can be used for various fiber-reinforced polymer (FRP) industries to repair laminated composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Adhesion
Journal of Adhesion 工程技术-材料科学:综合
CiteScore
5.30
自引率
9.10%
发文量
55
审稿时长
1 months
期刊介绍: The Journal of Adhesion is dedicated to perpetuating understanding of the phenomenon of adhesion and its practical applications. The art of adhesion is maturing into a science that requires a broad, coordinated interdisciplinary effort to help illuminate its complex nature and numerous manifestations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信