Anne Louise Askou, Josephine Natalia Esther Benckendorff, Andreas Holmgaard, Tina Storm, L. Aagaard, T. Bek, J. Mikkelsen, T. Corydon
{"title":"通过视网膜下递送编码抗血管生成小rna的多基因慢病毒载体抑制小鼠脉络膜新生血管。","authors":"Anne Louise Askou, Josephine Natalia Esther Benckendorff, Andreas Holmgaard, Tina Storm, L. Aagaard, T. Bek, J. Mikkelsen, T. Corydon","doi":"10.1089/hum.2017.079","DOIUrl":null,"url":null,"abstract":"Lentivirus-based vectors have been used for the development of potent gene therapies. Here, we present application of a multigenic lentiviral vector (LV) producing multiple anti-angiogenic microRNAs following subretinal delivery in a laser-induced choroidal neovascularization (CNV) mouse model. This versatile LV, carrying back-to-back RNApolII-driven expression cassettes, enables combined expression of microRNAs targeting vascular endothelial growth factor A (Vegfa) mRNA, and fluorescent reporters. In addition, by including a vitelliform macular dystrophy 2 (VMD2) promoter, expression of microRNAs is restricted to the retinal pigment epithelial (RPE) cells. Already 6 days post injection (PI) robust and widespread fluorescent signals of eGFP are observed in the retina by fundoscopy. The eGFP expression peaks at day 21 PI and persists with stable expression for at least 9 months. In parallel, prominent AsRED co-expression, encoded from the VMD2-driven microRNA expression cassette, is evident in retinal sections and flat-mounts, revealing RPE-specific expression of microRNAs. Furthermore, LV-delivered microRNAs targeting the Vegfa gene in RPE cells reduced the size of laser-induced CNV in mice 28 days PI, as a consequence of diminished VEGF levels, suggesting that LVs delivered locally are powerful tools in the development of gene therapy-based strategies for treatment of age-related macular degeneration (AMD).","PeriodicalId":13126,"journal":{"name":"Human Gene Therapy Methods","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/hum.2017.079","citationCount":"6","resultStr":"{\"title\":\"Suppression of choroidal neovascularization in mice by subretinal delivery of multigenic lentiviral vectors encoding anti-angiogenic microRNAs.\",\"authors\":\"Anne Louise Askou, Josephine Natalia Esther Benckendorff, Andreas Holmgaard, Tina Storm, L. Aagaard, T. Bek, J. Mikkelsen, T. Corydon\",\"doi\":\"10.1089/hum.2017.079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lentivirus-based vectors have been used for the development of potent gene therapies. Here, we present application of a multigenic lentiviral vector (LV) producing multiple anti-angiogenic microRNAs following subretinal delivery in a laser-induced choroidal neovascularization (CNV) mouse model. This versatile LV, carrying back-to-back RNApolII-driven expression cassettes, enables combined expression of microRNAs targeting vascular endothelial growth factor A (Vegfa) mRNA, and fluorescent reporters. In addition, by including a vitelliform macular dystrophy 2 (VMD2) promoter, expression of microRNAs is restricted to the retinal pigment epithelial (RPE) cells. Already 6 days post injection (PI) robust and widespread fluorescent signals of eGFP are observed in the retina by fundoscopy. The eGFP expression peaks at day 21 PI and persists with stable expression for at least 9 months. In parallel, prominent AsRED co-expression, encoded from the VMD2-driven microRNA expression cassette, is evident in retinal sections and flat-mounts, revealing RPE-specific expression of microRNAs. Furthermore, LV-delivered microRNAs targeting the Vegfa gene in RPE cells reduced the size of laser-induced CNV in mice 28 days PI, as a consequence of diminished VEGF levels, suggesting that LVs delivered locally are powerful tools in the development of gene therapy-based strategies for treatment of age-related macular degeneration (AMD).\",\"PeriodicalId\":13126,\"journal\":{\"name\":\"Human Gene Therapy Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/hum.2017.079\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Gene Therapy Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/hum.2017.079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene Therapy Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/hum.2017.079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
Suppression of choroidal neovascularization in mice by subretinal delivery of multigenic lentiviral vectors encoding anti-angiogenic microRNAs.
Lentivirus-based vectors have been used for the development of potent gene therapies. Here, we present application of a multigenic lentiviral vector (LV) producing multiple anti-angiogenic microRNAs following subretinal delivery in a laser-induced choroidal neovascularization (CNV) mouse model. This versatile LV, carrying back-to-back RNApolII-driven expression cassettes, enables combined expression of microRNAs targeting vascular endothelial growth factor A (Vegfa) mRNA, and fluorescent reporters. In addition, by including a vitelliform macular dystrophy 2 (VMD2) promoter, expression of microRNAs is restricted to the retinal pigment epithelial (RPE) cells. Already 6 days post injection (PI) robust and widespread fluorescent signals of eGFP are observed in the retina by fundoscopy. The eGFP expression peaks at day 21 PI and persists with stable expression for at least 9 months. In parallel, prominent AsRED co-expression, encoded from the VMD2-driven microRNA expression cassette, is evident in retinal sections and flat-mounts, revealing RPE-specific expression of microRNAs. Furthermore, LV-delivered microRNAs targeting the Vegfa gene in RPE cells reduced the size of laser-induced CNV in mice 28 days PI, as a consequence of diminished VEGF levels, suggesting that LVs delivered locally are powerful tools in the development of gene therapy-based strategies for treatment of age-related macular degeneration (AMD).
期刊介绍:
Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
The Journal is divided into three parts. Human Gene Therapy, the flagship, is published 12 times per year. HGT Methods, a bimonthly journal, focuses on the applications of gene therapy to product testing and development. HGT Clinical Development, a quarterly journal, serves as a venue for publishing data relevant to the regulatory review and commercial development of cell and gene therapy products.