三维湍流大涡模拟的傅里叶神经算子方法

IF 3.2 3区 工程技术 Q2 MECHANICS
Zhijie Li , Wenhui Peng , Zelong Yuan , Jianchun Wang
{"title":"三维湍流大涡模拟的傅里叶神经算子方法","authors":"Zhijie Li ,&nbsp;Wenhui Peng ,&nbsp;Zelong Yuan ,&nbsp;Jianchun Wang","doi":"10.1016/j.taml.2022.100389","DOIUrl":null,"url":null,"abstract":"<div><p>Fourier neural operator (FNO) model is developed for large eddy simulation (LES) of three-dimensional (3D) turbulence. Velocity fields of isotropic turbulence generated by direct numerical simulation (DNS) are used for training the FNO model to predict the filtered velocity field at a given time. The input of the FNO model is the filtered velocity fields at the previous several time-nodes with large time lag. In the <em>a posteriori</em> study of LES, the FNO model performs better than the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM) in the prediction of the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and the instantaneous flow structures. Moreover, the proposed model can significantly reduce the computational cost, and can be well generalized to LES of turbulence at higher Taylor-Reynolds numbers.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"12 6","pages":"Article 100389"},"PeriodicalIF":3.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034922000691/pdfft?md5=542e6e82c83c7304ab33f08f1a4cfff8&pid=1-s2.0-S2095034922000691-main.pdf","citationCount":"16","resultStr":"{\"title\":\"Fourier neural operator approach to large eddy simulation of three-dimensional turbulence\",\"authors\":\"Zhijie Li ,&nbsp;Wenhui Peng ,&nbsp;Zelong Yuan ,&nbsp;Jianchun Wang\",\"doi\":\"10.1016/j.taml.2022.100389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fourier neural operator (FNO) model is developed for large eddy simulation (LES) of three-dimensional (3D) turbulence. Velocity fields of isotropic turbulence generated by direct numerical simulation (DNS) are used for training the FNO model to predict the filtered velocity field at a given time. The input of the FNO model is the filtered velocity fields at the previous several time-nodes with large time lag. In the <em>a posteriori</em> study of LES, the FNO model performs better than the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM) in the prediction of the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and the instantaneous flow structures. Moreover, the proposed model can significantly reduce the computational cost, and can be well generalized to LES of turbulence at higher Taylor-Reynolds numbers.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":\"12 6\",\"pages\":\"Article 100389\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095034922000691/pdfft?md5=542e6e82c83c7304ab33f08f1a4cfff8&pid=1-s2.0-S2095034922000691-main.pdf\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095034922000691\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034922000691","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 16

摘要

建立了三维湍流大涡模拟的傅里叶神经算子(FNO)模型。利用直接数值模拟(DNS)产生的各向同性湍流的速度场来训练FNO模型,以预测给定时间的过滤速度场。FNO模型的输入是前几个时间节点上滤波后的速度场,具有较大的时滞。在LES的后验研究中,FNO模型在速度谱、涡度和速度增量的概率密度函数以及瞬时流结构的预测方面优于动态Smagorinsky模型(DSM)和动态混合模型(DMM)。此外,该模型可以显著降低计算成本,并且可以很好地推广到更高泰勒-雷诺数的湍流LES。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier neural operator approach to large eddy simulation of three-dimensional turbulence

Fourier neural operator (FNO) model is developed for large eddy simulation (LES) of three-dimensional (3D) turbulence. Velocity fields of isotropic turbulence generated by direct numerical simulation (DNS) are used for training the FNO model to predict the filtered velocity field at a given time. The input of the FNO model is the filtered velocity fields at the previous several time-nodes with large time lag. In the a posteriori study of LES, the FNO model performs better than the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM) in the prediction of the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and the instantaneous flow structures. Moreover, the proposed model can significantly reduce the computational cost, and can be well generalized to LES of turbulence at higher Taylor-Reynolds numbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
545
审稿时长
12 weeks
期刊介绍: An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信