Zhijie Li , Wenhui Peng , Zelong Yuan , Jianchun Wang
{"title":"三维湍流大涡模拟的傅里叶神经算子方法","authors":"Zhijie Li , Wenhui Peng , Zelong Yuan , Jianchun Wang","doi":"10.1016/j.taml.2022.100389","DOIUrl":null,"url":null,"abstract":"<div><p>Fourier neural operator (FNO) model is developed for large eddy simulation (LES) of three-dimensional (3D) turbulence. Velocity fields of isotropic turbulence generated by direct numerical simulation (DNS) are used for training the FNO model to predict the filtered velocity field at a given time. The input of the FNO model is the filtered velocity fields at the previous several time-nodes with large time lag. In the <em>a posteriori</em> study of LES, the FNO model performs better than the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM) in the prediction of the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and the instantaneous flow structures. Moreover, the proposed model can significantly reduce the computational cost, and can be well generalized to LES of turbulence at higher Taylor-Reynolds numbers.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"12 6","pages":"Article 100389"},"PeriodicalIF":3.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034922000691/pdfft?md5=542e6e82c83c7304ab33f08f1a4cfff8&pid=1-s2.0-S2095034922000691-main.pdf","citationCount":"16","resultStr":"{\"title\":\"Fourier neural operator approach to large eddy simulation of three-dimensional turbulence\",\"authors\":\"Zhijie Li , Wenhui Peng , Zelong Yuan , Jianchun Wang\",\"doi\":\"10.1016/j.taml.2022.100389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fourier neural operator (FNO) model is developed for large eddy simulation (LES) of three-dimensional (3D) turbulence. Velocity fields of isotropic turbulence generated by direct numerical simulation (DNS) are used for training the FNO model to predict the filtered velocity field at a given time. The input of the FNO model is the filtered velocity fields at the previous several time-nodes with large time lag. In the <em>a posteriori</em> study of LES, the FNO model performs better than the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM) in the prediction of the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and the instantaneous flow structures. Moreover, the proposed model can significantly reduce the computational cost, and can be well generalized to LES of turbulence at higher Taylor-Reynolds numbers.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":\"12 6\",\"pages\":\"Article 100389\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095034922000691/pdfft?md5=542e6e82c83c7304ab33f08f1a4cfff8&pid=1-s2.0-S2095034922000691-main.pdf\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095034922000691\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034922000691","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Fourier neural operator approach to large eddy simulation of three-dimensional turbulence
Fourier neural operator (FNO) model is developed for large eddy simulation (LES) of three-dimensional (3D) turbulence. Velocity fields of isotropic turbulence generated by direct numerical simulation (DNS) are used for training the FNO model to predict the filtered velocity field at a given time. The input of the FNO model is the filtered velocity fields at the previous several time-nodes with large time lag. In the a posteriori study of LES, the FNO model performs better than the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM) in the prediction of the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and the instantaneous flow structures. Moreover, the proposed model can significantly reduce the computational cost, and can be well generalized to LES of turbulence at higher Taylor-Reynolds numbers.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).