一维基底上纤维的稳定性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hamid Abban, M. Fedorchuk, I. Krylov
{"title":"一维基底上纤维的稳定性","authors":"Hamid Abban, M. Fedorchuk, I. Krylov","doi":"10.1215/00127094-2022-0025","DOIUrl":null,"url":null,"abstract":"We introduce and study a new notion of stability for varieties fibered over curves, motivated by Koll\\'ar's stability for homogeneous polynomials with integral coefficients. We develop tools to study geometric properties of stable birational models of fibrations whose fibers are complete intersections in weighted projective spaces. As an application, we prove the existence of standard models of threefold degree one and two del Pezzo fibrations, settling a conjecture of Corti from 1996.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stability of fibrations over one-dimensional bases\",\"authors\":\"Hamid Abban, M. Fedorchuk, I. Krylov\",\"doi\":\"10.1215/00127094-2022-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and study a new notion of stability for varieties fibered over curves, motivated by Koll\\\\'ar's stability for homogeneous polynomials with integral coefficients. We develop tools to study geometric properties of stable birational models of fibrations whose fibers are complete intersections in weighted projective spaces. As an application, we prove the existence of standard models of threefold degree one and two del Pezzo fibrations, settling a conjecture of Corti from 1996.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2019-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3

摘要

本文从整系数齐次多项式的Koll\ ar稳定性出发,引入并研究了曲线上纤维变异稳定性的新概念。我们开发了工具来研究纤维在加权投影空间中是完全相交的纤维的稳定双分子模型的几何性质。作为应用,我们证明了三次一、二次del Pezzo振动标准模型的存在性,解决了Corti 1996年提出的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of fibrations over one-dimensional bases
We introduce and study a new notion of stability for varieties fibered over curves, motivated by Koll\'ar's stability for homogeneous polynomials with integral coefficients. We develop tools to study geometric properties of stable birational models of fibrations whose fibers are complete intersections in weighted projective spaces. As an application, we prove the existence of standard models of threefold degree one and two del Pezzo fibrations, settling a conjecture of Corti from 1996.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信