一阶直觉模糊微分方程一步法的收敛性、一致性和稳定性分析

Q3 Computer Science
{"title":"一阶直觉模糊微分方程一步法的收敛性、一致性和稳定性分析","authors":"","doi":"10.4018/ijfsa.302123","DOIUrl":null,"url":null,"abstract":"In this work, we consider the initial value problems in intuitionistic fuzzy ordinary differential equations. The one-step method for approximating the solution of these problems has been defined. The convergence, consistency, and stability of the difference method for approximating the solution of intuitionistic fuzzy differential equations are studied, and the local truncation error is defined. The accuracy and efficiency of the proposed concept are illustrated by solving some numerical examples.","PeriodicalId":38154,"journal":{"name":"International Journal of Fuzzy System Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence, Consistence, and Stability Analysis of One-Step Methods for First-Order Intuitionistic Fuzzy Differential Equations\",\"authors\":\"\",\"doi\":\"10.4018/ijfsa.302123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider the initial value problems in intuitionistic fuzzy ordinary differential equations. The one-step method for approximating the solution of these problems has been defined. The convergence, consistency, and stability of the difference method for approximating the solution of intuitionistic fuzzy differential equations are studied, and the local truncation error is defined. The accuracy and efficiency of the proposed concept are illustrated by solving some numerical examples.\",\"PeriodicalId\":38154,\"journal\":{\"name\":\"International Journal of Fuzzy System Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fuzzy System Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijfsa.302123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy System Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijfsa.302123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文研究直觉模糊常微分方程的初值问题。定义了一步逼近这些问题解的方法。研究了差分法逼近直觉模糊微分方程解的收敛性、一致性和稳定性,并定义了局部截断误差。通过数值算例说明了该概念的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence, Consistence, and Stability Analysis of One-Step Methods for First-Order Intuitionistic Fuzzy Differential Equations
In this work, we consider the initial value problems in intuitionistic fuzzy ordinary differential equations. The one-step method for approximating the solution of these problems has been defined. The convergence, consistency, and stability of the difference method for approximating the solution of intuitionistic fuzzy differential equations are studied, and the local truncation error is defined. The accuracy and efficiency of the proposed concept are illustrated by solving some numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fuzzy System Applications
International Journal of Fuzzy System Applications Computer Science-Computer Science (all)
CiteScore
2.40
自引率
0.00%
发文量
65
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信