{"title":"Yamabe不变量、齐次空间和有理复曲面","authors":"C. LeBrun","doi":"10.3842/SIGMA.2023.027","DOIUrl":null,"url":null,"abstract":"The Yamabe invariant is a diffeomorphism invariant of smooth compact manifolds that arises from the normalized Einstein-Hilbert functional. This article highlights the manner in which one compelling open problem regarding the Yamabe invariant appears to be closely tied to static potentials and the first eigenvalue of the Laplacian.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yamabe Invariants, Homogeneous Spaces, and Rational Complex Surfaces\",\"authors\":\"C. LeBrun\",\"doi\":\"10.3842/SIGMA.2023.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Yamabe invariant is a diffeomorphism invariant of smooth compact manifolds that arises from the normalized Einstein-Hilbert functional. This article highlights the manner in which one compelling open problem regarding the Yamabe invariant appears to be closely tied to static potentials and the first eigenvalue of the Laplacian.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3842/SIGMA.2023.027\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2023.027","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Yamabe Invariants, Homogeneous Spaces, and Rational Complex Surfaces
The Yamabe invariant is a diffeomorphism invariant of smooth compact manifolds that arises from the normalized Einstein-Hilbert functional. This article highlights the manner in which one compelling open problem regarding the Yamabe invariant appears to be closely tied to static potentials and the first eigenvalue of the Laplacian.
期刊介绍:
Scope
Geometrical methods in mathematical physics
Lie theory and differential equations
Classical and quantum integrable systems
Algebraic methods in dynamical systems and chaos
Exactly and quasi-exactly solvable models
Lie groups and algebras, representation theory
Orthogonal polynomials and special functions
Integrable probability and stochastic processes
Quantum algebras, quantum groups and their representations
Symplectic, Poisson and noncommutative geometry
Algebraic geometry and its applications
Quantum field theories and string/gauge theories
Statistical physics and condensed matter physics
Quantum gravity and cosmology.