基于数据融合的入侵检测大数据分析

IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
F. Jemili
{"title":"基于数据融合的入侵检测大数据分析","authors":"F. Jemili","doi":"10.1080/24751839.2023.2214976","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n Intrusion detection is seen as the most promising way for computer security. It is used to protect computer networks against different types of attacks. The major problem in the literature is the classification of data into two main classes: normal and intrusion. To solve this problem, several approaches have been proposed but the problem of false alarms is still present. To provide a solution to this problem, we have proposed a new intrusion detection approach based on data fusion. The main objective of this work is to suggest an approach of data fusion-based Big Data analytics to detect intrusions; It is to build one dataset which combines various datasets and contains all the attack types. This research consists in merging the heterogeneous datasets and removing redundancy information using Big Data analytics tools: Hadoop/MapReduce and Neo4j. In the next step, machine learning algorithms are implemented for learning. The first algorithm, called SSDM (Semantically Similar Data Miner), uses fuzzy logic to generate association rules between the different item sets. The second algorithm, called K2, is a score-based greedy search algorithm for learning Bayesian networks from data. Experimentation results prove that – in both cases – data fusion contributes to having very good results.","PeriodicalId":32180,"journal":{"name":"Journal of Information and Telecommunication","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards data fusion-based big data analytics for intrusion detection\",\"authors\":\"F. Jemili\",\"doi\":\"10.1080/24751839.2023.2214976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT\\n Intrusion detection is seen as the most promising way for computer security. It is used to protect computer networks against different types of attacks. The major problem in the literature is the classification of data into two main classes: normal and intrusion. To solve this problem, several approaches have been proposed but the problem of false alarms is still present. To provide a solution to this problem, we have proposed a new intrusion detection approach based on data fusion. The main objective of this work is to suggest an approach of data fusion-based Big Data analytics to detect intrusions; It is to build one dataset which combines various datasets and contains all the attack types. This research consists in merging the heterogeneous datasets and removing redundancy information using Big Data analytics tools: Hadoop/MapReduce and Neo4j. In the next step, machine learning algorithms are implemented for learning. The first algorithm, called SSDM (Semantically Similar Data Miner), uses fuzzy logic to generate association rules between the different item sets. The second algorithm, called K2, is a score-based greedy search algorithm for learning Bayesian networks from data. Experimentation results prove that – in both cases – data fusion contributes to having very good results.\",\"PeriodicalId\":32180,\"journal\":{\"name\":\"Journal of Information and Telecommunication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24751839.2023.2214976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24751839.2023.2214976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards data fusion-based big data analytics for intrusion detection
ABSTRACT Intrusion detection is seen as the most promising way for computer security. It is used to protect computer networks against different types of attacks. The major problem in the literature is the classification of data into two main classes: normal and intrusion. To solve this problem, several approaches have been proposed but the problem of false alarms is still present. To provide a solution to this problem, we have proposed a new intrusion detection approach based on data fusion. The main objective of this work is to suggest an approach of data fusion-based Big Data analytics to detect intrusions; It is to build one dataset which combines various datasets and contains all the attack types. This research consists in merging the heterogeneous datasets and removing redundancy information using Big Data analytics tools: Hadoop/MapReduce and Neo4j. In the next step, machine learning algorithms are implemented for learning. The first algorithm, called SSDM (Semantically Similar Data Miner), uses fuzzy logic to generate association rules between the different item sets. The second algorithm, called K2, is a score-based greedy search algorithm for learning Bayesian networks from data. Experimentation results prove that – in both cases – data fusion contributes to having very good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信