Khaled Bodoor, Musa I. El-Barghouthi, Khaleel I. Assaf, Baker Jawabrah Al Hourani, Abdel Monem M. Rawashdeh, Osama M. Abuhasan, Dima F. Alhamad, Hamzeh M. Abdel-Halim
{"title":"瓜氨酸与色氨酸、苯丙氨酸和酪氨酸络合的分子动力学研究[7]","authors":"Khaled Bodoor, Musa I. El-Barghouthi, Khaleel I. Assaf, Baker Jawabrah Al Hourani, Abdel Monem M. Rawashdeh, Osama M. Abuhasan, Dima F. Alhamad, Hamzeh M. Abdel-Halim","doi":"10.1007/s10847-021-01113-2","DOIUrl":null,"url":null,"abstract":"<div><p>Molecular dynamics simulations were performed in aqueous solution to elucidate an atomistic level picture of complex formation between cucurbit[7]uril (CB7) and three standard aromatic amino acids: tyrosine, tryptophan, and phenylalanine. It was found that all three amino acids formed stable host–guest complexes with CB7, in which the side chain was included inside the hydrophobic cavity and the ammonium and carboxylate groups were excluded. The major forces driving complexation, as calculated from the MM-PBSA method, were the electrostatic and van der Waal interactions. To better understand the effect of pH and the roles of the ammonium and carboxylate groups in the complexation process, simulations were performed for phenylalanine considering different protonation state (at low and high pH) as well as for the deaminated and decarboxylated forms of phenylalanine. The results showed that, compared to phenylalanine at neutral pH (exists as zwitterion), low pH resulted in an increased complex stability for the cationic form, deamination and high pH reduced the stability, while decarboxylation did not result in a significant change. Results from quantum-chemical calculations correlated well with the simulation data.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":54324,"journal":{"name":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","volume":"102 1-2","pages":"159 - 168"},"PeriodicalIF":1.7000,"publicationDate":"2021-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A molecular dynamics study of the complexation of tryptophan, phenylalanine and tyrosine amino acids with cucurbit[7]uril\",\"authors\":\"Khaled Bodoor, Musa I. El-Barghouthi, Khaleel I. Assaf, Baker Jawabrah Al Hourani, Abdel Monem M. Rawashdeh, Osama M. Abuhasan, Dima F. Alhamad, Hamzeh M. Abdel-Halim\",\"doi\":\"10.1007/s10847-021-01113-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Molecular dynamics simulations were performed in aqueous solution to elucidate an atomistic level picture of complex formation between cucurbit[7]uril (CB7) and three standard aromatic amino acids: tyrosine, tryptophan, and phenylalanine. It was found that all three amino acids formed stable host–guest complexes with CB7, in which the side chain was included inside the hydrophobic cavity and the ammonium and carboxylate groups were excluded. The major forces driving complexation, as calculated from the MM-PBSA method, were the electrostatic and van der Waal interactions. To better understand the effect of pH and the roles of the ammonium and carboxylate groups in the complexation process, simulations were performed for phenylalanine considering different protonation state (at low and high pH) as well as for the deaminated and decarboxylated forms of phenylalanine. The results showed that, compared to phenylalanine at neutral pH (exists as zwitterion), low pH resulted in an increased complex stability for the cationic form, deamination and high pH reduced the stability, while decarboxylation did not result in a significant change. Results from quantum-chemical calculations correlated well with the simulation data.</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":54324,\"journal\":{\"name\":\"Journal of Inclusion Phenomena and Macrocyclic Chemistry\",\"volume\":\"102 1-2\",\"pages\":\"159 - 168\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inclusion Phenomena and Macrocyclic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10847-021-01113-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10847-021-01113-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A molecular dynamics study of the complexation of tryptophan, phenylalanine and tyrosine amino acids with cucurbit[7]uril
Molecular dynamics simulations were performed in aqueous solution to elucidate an atomistic level picture of complex formation between cucurbit[7]uril (CB7) and three standard aromatic amino acids: tyrosine, tryptophan, and phenylalanine. It was found that all three amino acids formed stable host–guest complexes with CB7, in which the side chain was included inside the hydrophobic cavity and the ammonium and carboxylate groups were excluded. The major forces driving complexation, as calculated from the MM-PBSA method, were the electrostatic and van der Waal interactions. To better understand the effect of pH and the roles of the ammonium and carboxylate groups in the complexation process, simulations were performed for phenylalanine considering different protonation state (at low and high pH) as well as for the deaminated and decarboxylated forms of phenylalanine. The results showed that, compared to phenylalanine at neutral pH (exists as zwitterion), low pH resulted in an increased complex stability for the cationic form, deamination and high pH reduced the stability, while decarboxylation did not result in a significant change. Results from quantum-chemical calculations correlated well with the simulation data.
期刊介绍:
The Journal of Inclusion Phenomena and Macrocyclic Chemistry is the premier interdisciplinary publication reporting on original research into all aspects of host-guest systems. Examples of specific areas of interest are: the preparation and characterization of new hosts and new host-guest systems, especially those involving macrocyclic ligands; crystallographic, spectroscopic, thermodynamic and theoretical studies; applications in chromatography and inclusion polymerization; enzyme modelling; molecular recognition and catalysis by inclusion compounds; intercalates in biological and non-biological systems, cyclodextrin complexes and their applications in the agriculture, flavoring, food and pharmaceutical industries; synthesis, characterization and applications of zeolites.
The journal publishes primarily reports of original research and preliminary communications, provided the latter represent a significant advance in the understanding of inclusion science. Critical reviews dealing with recent advances in the field are a periodic feature of the journal.