时空积密度的一些统计性质

Q3 Mathematics
Felipe Rodríguez-Berrio, F. Rodríguez-Cortés, J. Mateu, G. Adelfio
{"title":"时空积密度的一些统计性质","authors":"Felipe Rodríguez-Berrio, F. Rodríguez-Cortés, J. Mateu, G. Adelfio","doi":"10.15446/RCE.V44N1.84779","DOIUrl":null,"url":null,"abstract":"We present an extension of the non-parametric edge-corrected Ohser-type kernel estimator for the spatio-temporal product density function. We derive the mean and variance of the estimator and give a closed-form approximation for a spatio-temporal Poisson point process. Asymptotic properties of this second-order characteristic are derived, using an approach based on martingale theory. Taking advantage of the convergence to normality, confidence surfaces under the homogeneous Poisson process are built. A simulation study is presented to compare our approximation for the variance with Monte Carlo estimated values. Finally, we apply the resulting estimator and its properties to analyse the spatio-temporal distribution of the invasive meningococcal disease in the Rhineland Regional Council in Germany.","PeriodicalId":54477,"journal":{"name":"Revista Colombiana De Estadistica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Some Statistical Properties of the Spatio-Temporal Product Density\",\"authors\":\"Felipe Rodríguez-Berrio, F. Rodríguez-Cortés, J. Mateu, G. Adelfio\",\"doi\":\"10.15446/RCE.V44N1.84779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an extension of the non-parametric edge-corrected Ohser-type kernel estimator for the spatio-temporal product density function. We derive the mean and variance of the estimator and give a closed-form approximation for a spatio-temporal Poisson point process. Asymptotic properties of this second-order characteristic are derived, using an approach based on martingale theory. Taking advantage of the convergence to normality, confidence surfaces under the homogeneous Poisson process are built. A simulation study is presented to compare our approximation for the variance with Monte Carlo estimated values. Finally, we apply the resulting estimator and its properties to analyse the spatio-temporal distribution of the invasive meningococcal disease in the Rhineland Regional Council in Germany.\",\"PeriodicalId\":54477,\"journal\":{\"name\":\"Revista Colombiana De Estadistica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana De Estadistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/RCE.V44N1.84779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana De Estadistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/RCE.V44N1.84779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了时空积密度函数的非参数边校正ohser型核估计的扩展。我们推导了估计量的均值和方差,并给出了一个时空泊松点过程的封闭近似。利用基于鞅理论的方法,导出了该二阶特征的渐近性质。利用收敛于正态性的优点,构造了齐次泊松过程下的置信曲面。给出了一个模拟研究来比较我们对方差的近似与蒙特卡罗估计值。最后,我们应用所得到的估计量及其性质来分析侵袭性脑膜炎球菌病在德国莱茵兰地区的时空分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Some Statistical Properties of the Spatio-Temporal Product Density
We present an extension of the non-parametric edge-corrected Ohser-type kernel estimator for the spatio-temporal product density function. We derive the mean and variance of the estimator and give a closed-form approximation for a spatio-temporal Poisson point process. Asymptotic properties of this second-order characteristic are derived, using an approach based on martingale theory. Taking advantage of the convergence to normality, confidence surfaces under the homogeneous Poisson process are built. A simulation study is presented to compare our approximation for the variance with Monte Carlo estimated values. Finally, we apply the resulting estimator and its properties to analyse the spatio-temporal distribution of the invasive meningococcal disease in the Rhineland Regional Council in Germany.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana De Estadistica
Revista Colombiana De Estadistica STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Colombian Journal of Statistics publishes original articles of theoretical, methodological and educational kind in any branch of Statistics. Purely theoretical papers should include illustration of the techniques presented with real data or at least simulation experiments in order to verify the usefulness of the contents presented. Informative articles of high quality methodologies or statistical techniques applied in different fields of knowledge are also considered. Only articles in English language are considered for publication. The Editorial Committee assumes that the works submitted for evaluation have not been previously published and are not being given simultaneously for publication elsewhere, and will not be without prior consent of the Committee, unless, as a result of the assessment, decides not publish in the journal. It is further assumed that when the authors deliver a document for publication in the Colombian Journal of Statistics, they know the above conditions and agree with them.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信