生成3D人体模型和动画使用简单的草图

Alican Akman, Y. Sahillioğlu, T. M. Sezgin
{"title":"生成3D人体模型和动画使用简单的草图","authors":"Alican Akman, Y. Sahillioğlu, T. M. Sezgin","doi":"10.20380/GI2020.05","DOIUrl":null,"url":null,"abstract":"Generating 3D models from 2D images or sketches is a widely studied important problem in computer graphics. We describe the first method to generate a 3D human model from a single sketched stick figure. In contrast to the existing human modeling techniques, our method requires neither a statistical body shape model nor a rigged 3D character model. We exploit Variational Autoencoders to develop a novel framework capable of transitioning from a simple 2D stick figure sketch, to a corresponding 3D human model. Our network learns the mapping between the input sketch and the output 3D model. Furthermore, our model learns the embedding space around these models. We demonstrate that our network can generate not only 3D models, but also 3D animations through interpolation and extrapolation in the learned embedding space. Extensive experiments show that our model learns to generate reasonable 3D models and animations.","PeriodicalId":93493,"journal":{"name":"Proceedings. Graphics Interface (Conference)","volume":"1 1","pages":"28-36"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Generation of 3D Human Models and Animations Using Simple Sketches\",\"authors\":\"Alican Akman, Y. Sahillioğlu, T. M. Sezgin\",\"doi\":\"10.20380/GI2020.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generating 3D models from 2D images or sketches is a widely studied important problem in computer graphics. We describe the first method to generate a 3D human model from a single sketched stick figure. In contrast to the existing human modeling techniques, our method requires neither a statistical body shape model nor a rigged 3D character model. We exploit Variational Autoencoders to develop a novel framework capable of transitioning from a simple 2D stick figure sketch, to a corresponding 3D human model. Our network learns the mapping between the input sketch and the output 3D model. Furthermore, our model learns the embedding space around these models. We demonstrate that our network can generate not only 3D models, but also 3D animations through interpolation and extrapolation in the learned embedding space. Extensive experiments show that our model learns to generate reasonable 3D models and animations.\",\"PeriodicalId\":93493,\"journal\":{\"name\":\"Proceedings. Graphics Interface (Conference)\",\"volume\":\"1 1\",\"pages\":\"28-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Graphics Interface (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20380/GI2020.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Graphics Interface (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20380/GI2020.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

从二维图像或草图生成三维模型是计算机图形学中一个被广泛研究的重要问题。我们描述了第一种从单个草图棒状图形生成三维人体模型的方法。与现有的人体建模技术相比,我们的方法既不需要统计体型模型,也不需要装配的三维人物模型。我们利用变分自动编码器开发了一种新的框架,能够从简单的2D条形草图过渡到相应的3D人体模型。我们的网络学习输入草图和输出三维模型之间的映射。此外,我们的模型学习了这些模型周围的嵌入空间。我们证明,我们的网络不仅可以生成3D模型,还可以通过在学习的嵌入空间中进行插值和外推来生成3D动画。大量实验表明,我们的模型学会了生成合理的三维模型和动画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation of 3D Human Models and Animations Using Simple Sketches
Generating 3D models from 2D images or sketches is a widely studied important problem in computer graphics. We describe the first method to generate a 3D human model from a single sketched stick figure. In contrast to the existing human modeling techniques, our method requires neither a statistical body shape model nor a rigged 3D character model. We exploit Variational Autoencoders to develop a novel framework capable of transitioning from a simple 2D stick figure sketch, to a corresponding 3D human model. Our network learns the mapping between the input sketch and the output 3D model. Furthermore, our model learns the embedding space around these models. We demonstrate that our network can generate not only 3D models, but also 3D animations through interpolation and extrapolation in the learned embedding space. Extensive experiments show that our model learns to generate reasonable 3D models and animations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信