{"title":"用谱法分析径向可拉伸旋转盘引起的磁流体动力学微极纳米流体流动","authors":"Ayele Tulu","doi":"10.1155/2023/5283475","DOIUrl":null,"url":null,"abstract":"The present analysis is aimed at examining MHD micropolar nanofluid flow past a radially stretchable rotating disk with the Cattaneo-Christov non-Fourier heat and non-Fick mass flux model. To begin with, the model is developed in the form of nonlinear partial differential equations (PDEs) for momentum, microrotation, thermal, and concentration with their boundary conditions. Employing suitable similarity transformation, the boundary layer micropolar nanofluid flows governing these PDEs are transformed into large systems of dimensionless coupled nonlinear ordinary differential equations (ODEs). These dimensionless ODEs are solved numerically by means of the spectral local linearization method (SLLM). The consequences of more noticeable involved parameters on different flow fields and engineering quantities of interest are thoroughly inspected, and the results are presented via graph plots and tables. The obtained results confirm that SLLM is a stable, accurate, convergent, and computationally very efficient method to solve a large coupled system of equations. The radial velocity grows while the tangential velocity, temperature, and concentration distributions turn down as the value of the radial stretching parameter improves, and hence, in practical applications, radial stretching of the disk is helpful to advance the cooling process of the rotating disk. The occurrence of microrotation viscosity in microrotation parameters (\n \n \n \n A\n \n \n 1\n \n \n −\n \n \n A\n \n \n 6\n \n \n \n ) declines the radial velocity profile, and the kinetic energy of the fluid is reduced to some extent far away from the surface of the disk. The novelty of the study is the consideration of microscopic effects occurring from the micropolar fluid elements such as micromotion and couple stress, the effects of non-Fourier’s heat and non-Fick’s mass flux, and the effect of radial stretching disk on micropolar nanofluid flow, heat, and mass transfer.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Magnetohydrodynamic Micropolar Nanofluid Flow due to Radially Stretchable Rotating Disk Employing Spectral Method\",\"authors\":\"Ayele Tulu\",\"doi\":\"10.1155/2023/5283475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present analysis is aimed at examining MHD micropolar nanofluid flow past a radially stretchable rotating disk with the Cattaneo-Christov non-Fourier heat and non-Fick mass flux model. To begin with, the model is developed in the form of nonlinear partial differential equations (PDEs) for momentum, microrotation, thermal, and concentration with their boundary conditions. Employing suitable similarity transformation, the boundary layer micropolar nanofluid flows governing these PDEs are transformed into large systems of dimensionless coupled nonlinear ordinary differential equations (ODEs). These dimensionless ODEs are solved numerically by means of the spectral local linearization method (SLLM). The consequences of more noticeable involved parameters on different flow fields and engineering quantities of interest are thoroughly inspected, and the results are presented via graph plots and tables. The obtained results confirm that SLLM is a stable, accurate, convergent, and computationally very efficient method to solve a large coupled system of equations. The radial velocity grows while the tangential velocity, temperature, and concentration distributions turn down as the value of the radial stretching parameter improves, and hence, in practical applications, radial stretching of the disk is helpful to advance the cooling process of the rotating disk. The occurrence of microrotation viscosity in microrotation parameters (\\n \\n \\n \\n A\\n \\n \\n 1\\n \\n \\n −\\n \\n \\n A\\n \\n \\n 6\\n \\n \\n \\n ) declines the radial velocity profile, and the kinetic energy of the fluid is reduced to some extent far away from the surface of the disk. The novelty of the study is the consideration of microscopic effects occurring from the micropolar fluid elements such as micromotion and couple stress, the effects of non-Fourier’s heat and non-Fick’s mass flux, and the effect of radial stretching disk on micropolar nanofluid flow, heat, and mass transfer.\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5283475\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/5283475","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Analysis of Magnetohydrodynamic Micropolar Nanofluid Flow due to Radially Stretchable Rotating Disk Employing Spectral Method
The present analysis is aimed at examining MHD micropolar nanofluid flow past a radially stretchable rotating disk with the Cattaneo-Christov non-Fourier heat and non-Fick mass flux model. To begin with, the model is developed in the form of nonlinear partial differential equations (PDEs) for momentum, microrotation, thermal, and concentration with their boundary conditions. Employing suitable similarity transformation, the boundary layer micropolar nanofluid flows governing these PDEs are transformed into large systems of dimensionless coupled nonlinear ordinary differential equations (ODEs). These dimensionless ODEs are solved numerically by means of the spectral local linearization method (SLLM). The consequences of more noticeable involved parameters on different flow fields and engineering quantities of interest are thoroughly inspected, and the results are presented via graph plots and tables. The obtained results confirm that SLLM is a stable, accurate, convergent, and computationally very efficient method to solve a large coupled system of equations. The radial velocity grows while the tangential velocity, temperature, and concentration distributions turn down as the value of the radial stretching parameter improves, and hence, in practical applications, radial stretching of the disk is helpful to advance the cooling process of the rotating disk. The occurrence of microrotation viscosity in microrotation parameters (
A
1
−
A
6
) declines the radial velocity profile, and the kinetic energy of the fluid is reduced to some extent far away from the surface of the disk. The novelty of the study is the consideration of microscopic effects occurring from the micropolar fluid elements such as micromotion and couple stress, the effects of non-Fourier’s heat and non-Fick’s mass flux, and the effect of radial stretching disk on micropolar nanofluid flow, heat, and mass transfer.
期刊介绍:
Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike.
As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.