Asjad Ali, Do Yoon-Hyun, T. Noh, Yu-mi Choi, Sukyeung Lee, Sejong Oh, Myung-chul Lee
{"title":"利用水稻黄单胞菌(Xoo)主要韩国小种对水稻白叶枯病抗性位点的初步全基因组关联定位","authors":"Asjad Ali, Do Yoon-Hyun, T. Noh, Yu-mi Choi, Sukyeung Lee, Sejong Oh, Myung-chul Lee","doi":"10.21475/POJ.10.02.17.PNE400","DOIUrl":null,"url":null,"abstract":"Bacterial leaf blight (BLB), caused by X. oryzae pv. oryzae (Xoo), is one of the most destructive diseases of rice due to its high epidemic potential. Understanding BLB resistance at a genetic level is important to further improve the rice breeding that provides one of the best approaches to control BLB disease. In the present investigation, a collection of 96 accessions was used in the genomewide association study (GWAS) for BLB resistance loci against four Korean races of Xoo that were represented by the prevailing BLB isolates under Xoo differential system. The results of the bioassay using a selected set of 96 accessions showed that a large number of accessions (93.75%) were resistant to K1 race, while the least number of accessions (34.37%) resisted K3a race. For races K2 and K3, the resistant germplasm proportion remained between 66.67 to 70.83%. The genotypic data produced SNP matrix for a total of 293,379 SNPs. After imputation the missing data was removed, which exhibited 34,724 SNPs for association analysis. GWAS results showed strong signals of association at a threshold of [-log10(P-value)] more than 5 (K1 and K2) and more than 4 (K3 and K3a) for nine of the 39 SNPs, which are plausible candidate loci of resistance genes. These SNP loci were positioned on rice chromosome 2, 9, and 11 for K1 and K2 races, whereas on chromosome 4, 6, 11, and 12 for K3 and K3a races. The significant loci detected have also been illustrated, NBS-LRR type disease resistance protein, SNARE domain containing protein, Histone deacetylase 19, NADP-dependent oxidoreductase, and other expressed and unknown proteins. Our results provide a better understanding of the distribution of genetic variation of BLB resistance to Korean pathogen races and breeding of resistant rice cultivars.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":"10 1","pages":"97-106"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preliminary genome-wide association mapping of rice bacterial leaf blight resistance loci using major Korean races of Xoo ('Xanthomonas oryzae')\",\"authors\":\"Asjad Ali, Do Yoon-Hyun, T. Noh, Yu-mi Choi, Sukyeung Lee, Sejong Oh, Myung-chul Lee\",\"doi\":\"10.21475/POJ.10.02.17.PNE400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial leaf blight (BLB), caused by X. oryzae pv. oryzae (Xoo), is one of the most destructive diseases of rice due to its high epidemic potential. Understanding BLB resistance at a genetic level is important to further improve the rice breeding that provides one of the best approaches to control BLB disease. In the present investigation, a collection of 96 accessions was used in the genomewide association study (GWAS) for BLB resistance loci against four Korean races of Xoo that were represented by the prevailing BLB isolates under Xoo differential system. The results of the bioassay using a selected set of 96 accessions showed that a large number of accessions (93.75%) were resistant to K1 race, while the least number of accessions (34.37%) resisted K3a race. For races K2 and K3, the resistant germplasm proportion remained between 66.67 to 70.83%. The genotypic data produced SNP matrix for a total of 293,379 SNPs. After imputation the missing data was removed, which exhibited 34,724 SNPs for association analysis. GWAS results showed strong signals of association at a threshold of [-log10(P-value)] more than 5 (K1 and K2) and more than 4 (K3 and K3a) for nine of the 39 SNPs, which are plausible candidate loci of resistance genes. These SNP loci were positioned on rice chromosome 2, 9, and 11 for K1 and K2 races, whereas on chromosome 4, 6, 11, and 12 for K3 and K3a races. The significant loci detected have also been illustrated, NBS-LRR type disease resistance protein, SNARE domain containing protein, Histone deacetylase 19, NADP-dependent oxidoreductase, and other expressed and unknown proteins. Our results provide a better understanding of the distribution of genetic variation of BLB resistance to Korean pathogen races and breeding of resistant rice cultivars.\",\"PeriodicalId\":54602,\"journal\":{\"name\":\"Plant Omics\",\"volume\":\"10 1\",\"pages\":\"97-106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Omics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21475/POJ.10.02.17.PNE400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Omics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21475/POJ.10.02.17.PNE400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Preliminary genome-wide association mapping of rice bacterial leaf blight resistance loci using major Korean races of Xoo ('Xanthomonas oryzae')
Bacterial leaf blight (BLB), caused by X. oryzae pv. oryzae (Xoo), is one of the most destructive diseases of rice due to its high epidemic potential. Understanding BLB resistance at a genetic level is important to further improve the rice breeding that provides one of the best approaches to control BLB disease. In the present investigation, a collection of 96 accessions was used in the genomewide association study (GWAS) for BLB resistance loci against four Korean races of Xoo that were represented by the prevailing BLB isolates under Xoo differential system. The results of the bioassay using a selected set of 96 accessions showed that a large number of accessions (93.75%) were resistant to K1 race, while the least number of accessions (34.37%) resisted K3a race. For races K2 and K3, the resistant germplasm proportion remained between 66.67 to 70.83%. The genotypic data produced SNP matrix for a total of 293,379 SNPs. After imputation the missing data was removed, which exhibited 34,724 SNPs for association analysis. GWAS results showed strong signals of association at a threshold of [-log10(P-value)] more than 5 (K1 and K2) and more than 4 (K3 and K3a) for nine of the 39 SNPs, which are plausible candidate loci of resistance genes. These SNP loci were positioned on rice chromosome 2, 9, and 11 for K1 and K2 races, whereas on chromosome 4, 6, 11, and 12 for K3 and K3a races. The significant loci detected have also been illustrated, NBS-LRR type disease resistance protein, SNARE domain containing protein, Histone deacetylase 19, NADP-dependent oxidoreductase, and other expressed and unknown proteins. Our results provide a better understanding of the distribution of genetic variation of BLB resistance to Korean pathogen races and breeding of resistant rice cultivars.
期刊介绍:
Plant OMICS is an international, peer-reviewed publication that gathers and disseminates fundamental and applied knowledge in almost all area of molecular plant and animal biology, particularly OMICS-es including:
Coverage extends to the most corners of plant and animal biology, including molecular biology, genetics, functional and non-functional molecular breeding and physiology, developmental biology, and new technologies such as vaccines. This journal also covers the combination of many areas of molecular plant and animal biology. Plant Omics is also exteremely interested in molecular aspects of stress biology in plants and animals, including molecular physiology.