一种基于装袋算法的自适应压缩格式方法

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Huanyu Cui, Qilong Han, Nianbin Wang, Ye Wang
{"title":"一种基于装袋算法的自适应压缩格式方法","authors":"Huanyu Cui, Qilong Han, Nianbin Wang, Ye Wang","doi":"10.1080/17445760.2023.2231291","DOIUrl":null,"url":null,"abstract":"ABSTRACT The traditional parallel Sparse matrix vector multiplication (SpMV) method has been optimized by an application-specific or compression format-specific. However, a single compression format cannot deal with all sparse matrix types effectively in practical applications. To solve this problem, an adaptive compression format based on Bagging ensemble learning algorithm is proposed in this paper. Experiments show that the adaptive compression format has higher prediction and computational performance on NVIDIA V100 and NVIDIA RTX 2080Ti. Compared with SpMV of the four compression formats, SpMV based on adaptive compression format reduces the execution time of 1.5×, 6.6×, 9× and 1.1×, respectively.","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive approach for compression format based on bagging algorithm\",\"authors\":\"Huanyu Cui, Qilong Han, Nianbin Wang, Ye Wang\",\"doi\":\"10.1080/17445760.2023.2231291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The traditional parallel Sparse matrix vector multiplication (SpMV) method has been optimized by an application-specific or compression format-specific. However, a single compression format cannot deal with all sparse matrix types effectively in practical applications. To solve this problem, an adaptive compression format based on Bagging ensemble learning algorithm is proposed in this paper. Experiments show that the adaptive compression format has higher prediction and computational performance on NVIDIA V100 and NVIDIA RTX 2080Ti. Compared with SpMV of the four compression formats, SpMV based on adaptive compression format reduces the execution time of 1.5×, 6.6×, 9× and 1.1×, respectively.\",\"PeriodicalId\":45411,\"journal\":{\"name\":\"International Journal of Parallel Emergent and Distributed Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Parallel Emergent and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17445760.2023.2231291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17445760.2023.2231291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要传统的并行稀疏矩阵向量乘法(SpMV)方法通过特定应用或特定压缩格式进行了优化。然而,在实际应用中,单一的压缩格式不能有效地处理所有的稀疏矩阵类型。为了解决这一问题,本文提出了一种基于Bagging集成学习算法的自适应压缩格式。实验表明,该自适应压缩格式在NVIDIA V100和NVIDIA RTX 2080Ti上具有较高的预测性能和计算性能。与四种压缩格式的SpMV相比,基于自适应压缩格式的SpMV执行时间分别减少1.5倍、6.6倍、9倍和1.1倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive approach for compression format based on bagging algorithm
ABSTRACT The traditional parallel Sparse matrix vector multiplication (SpMV) method has been optimized by an application-specific or compression format-specific. However, a single compression format cannot deal with all sparse matrix types effectively in practical applications. To solve this problem, an adaptive compression format based on Bagging ensemble learning algorithm is proposed in this paper. Experiments show that the adaptive compression format has higher prediction and computational performance on NVIDIA V100 and NVIDIA RTX 2080Ti. Compared with SpMV of the four compression formats, SpMV based on adaptive compression format reduces the execution time of 1.5×, 6.6×, 9× and 1.1×, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信